XTR01
码龄3年
关注
提问 私信
  • 博客:3,623
    3,623
    总访问量
  • 5
    原创
  • 166,395
    排名
  • 52
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
  • 加入CSDN时间: 2021-07-14
博客简介:

XTR01的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    51
    当月
    0
个人成就
  • 获得92次点赞
  • 内容获得0次评论
  • 获得97次收藏
创作历程
  • 5篇
    2024年
成就勋章
TA的专栏
  • LLM
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MetaL-Prompt论文理解

MetaL-Prompt是一种用于轻量级提示生成的元学习方法。其目标是生成能够增强语言模型(LM)上下文学习能力的提示。提示生成模型(PGM)的元训练PGM被初始化为目标语言模型,通过元训练生成有效提示。这一过程称为元学习,因为PGM学会生成能引导目标LM学习有效上下文的提示。可训练填充(Trainable Padding)为减少提示生成过程中多次前向传递的开销,MetaL-Prompt提出了可训练填充。这使PGM可以同时生成多个提示标记。提示设计。
原创
发布博客 2024.06.12 ·
886 阅读 ·
25 点赞 ·
0 评论 ·
26 收藏

Medprompt论文总结

在研究中,Medprompt方法通过结合三种主要技术:动态少样本选择(Dynamic Few-shot Selection)、自生成思维链(Self-generated Chain of Thought)和选项洗牌集成(Choice Shuffle Ensembling),来提升模型在医疗问答任务中的性能。以下是对每种技术的详细介绍及其在Medprompt方法中的综合应用。
原创
发布博客 2024.06.08 ·
710 阅读 ·
27 点赞 ·
0 评论 ·
14 收藏

REACT论文总结

图1展示了四种提示方法(prompting methods)在解决不同问题时的比较。这些提示方法分别是(a)标准(Standard)、(b)链式思考(Chain-of-thought, CoT, ReasonOnly)、(c)仅行动(Act-only),和(d)ReAct(Reason+Act),用于解决HotpotQA(Yang et al., 2018)问题和AlfWorld(Shridhar et al., 2020b)游戏中的任务。
原创
发布博客 2024.05.31 ·
784 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

Prompt论文理解

其次,我们要求模型描述所识别的子项目的设置(描述所识别的子项目的设置是指根据已经识别出的主题或子项目,详细描述与其相关的具体场景或环境。值得注意的是,当方面词(aspect word)包含多个标记时,其自身距离为0(就是把方面词当作一个整体,如果方面词由多个单词组成则视为一个单词),而正负距离则根据方面词的开始和结束位置来计算(因为方面词是一个整体,所以与方面词的距离按整体来算)。接着,根据原始句子中单词的顺序来确定这些距离的正负性,即句子中从前一个单词到后一个单词的距离为正,反之为负。
原创
发布博客 2024.05.29 ·
880 阅读 ·
12 点赞 ·
0 评论 ·
30 收藏

TextMonkey的论文理解

在这个移位之后,某些窗口内可能由几个在特征图中不相邻的子窗口组成,因此使用掩蔽机制将自注意计算限制在每个子窗口内(这个子窗口是指被移动的不同颜色的小块构成的,这些有颜色的部分会被遮盖)。最后,处理后的特征与输入问题相结合,并由大型语言模型进行分析,以产生所需的答案。为了实现更平滑的训练初始化,作者对转移的窗口注意力进行了修改,允许它们从零初始化开始学习,避免在初始阶段对早期特征进行过度转换。其中I是输入图像,Q是问题序列,s~是输出序列,s是输入序列, L是输出序列的长度。
原创
发布博客 2024.04.01 ·
357 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏