给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入: [ [1,3,1], [1,5,1], [4,2,1] ] 输出: 7 解释: 因为路径 1→3→1→1→1 的总和最小。
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
分析思路:
由已知,除了第一排和第一列的元素,其余的元素都有两种途径(最后一步)到达。
要么从上到下到达,要么从左到右到达。
所以只需要比较这两种到达方法的最小值就行。
所以有状态转移方程:
F(x,y) = min(F(x-1,y),F(x,y-1)) + grid[x][y]
代码如下:
func minPathSum(grid [][]int) int {
// F(x,y) = min(F(x-1,y),F(x,y-1)) + grid[x][y]
m := len(grid)
n := len(grid[0])
dp := make([][]int,m)
for k,_ := range grid {
t := make([]int,n)
dp[k] = t
}
dp[0][0] = grid[0][0]
for i:=0;i<m;i++ {
for j:=0;j<n;j++ {
p := 0
q := 0
if i-1 >= 0 {
p = dp[i-1][j] + grid[i][j]
}
if j-1 >= 0 {
q = dp[i][j-1] + grid[i][j]
}
if p>0 && q>0 {
dp[i][j] = Min(p,q)
} else if p==0 && q>0 {
dp[i][j] = q
} else if p>0 && q==0 {
dp[i][j] = p
}
}
}
return dp[m-1][n-1]
}
func Min(a,b int) int {
if a<b {
return a
} else {
return b
}
}