归一化,标准化,缺失值处理

本文探讨了数据预处理中的关键步骤——归一化和标准化,这两种方法常用于调整数值特征的尺度,使其落入同一范围内。归一化通常将数据缩放至0-1区间,而标准化则使得数据符合正态分布,平均值为0,标准差为1。此外,还简要提及了如何处理数据集中的缺失值问题。
摘要由CSDN通过智能技术生成

归一化
在这里插入图片描述

标准化

在这里插入图片描述

from sklearn.preprocessing import MinMaxScaler ,StandardScaler,Imputer
import numpy as np



def mm():
    """
    归一化处理
    :return:
    """

    #mm = MinMaxScaler() 不指定范围,默认[0,1]
    mm = MinMaxScaler(feature_range=(2,3)) # 指定范围
    data = mm.fit_transform([[90,2,10,40],[60,4,15,45],[75,3,13,46]])
    print(data)


def stand():
    """
    标准化缩放
    :return:
    """

    std = StandardScaler()
    data = std.fit_transform([[1,-1,3],[2,4,2],[4,6,-1]])
    print(data)



def im():
    """
    缺失值
    :return:
    """
    im = Imputer(missing_values="NaN",strategy="mean",axis=0) # axis=0 是按列
    data = im.fit_transform([[1,2],[np.nan,3],[7,6]])
    print(data)






if __name__ == "__main__":
    mm()
    stand()
    im()

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值