分割分数的最小值
题目描述:
给n个正整数a1, a2, a3, ... ... an,将n个数顺序排成一列后分割成m段,每一段的分数被记为这段内所有数的和,该次分割的分数则被记为m段分数的最大值。问所有的分割方案中分割分数的最小值是多少?
其实本题,就是LeetCode的 410. Split Array Largest Sum。
问题分析:二分查找(Binary Search)
1、所给的数子都是正整数(很重要)。
2、让求的解可以事先确定其的范围[sum(nums) / m,sum(nums)]:
A: 最优解一定不小于sum(nums) / m,这个很好证明(前提,都是非负数),一个序列nums 被分割m段,如果有一个段小于sum(nums) / m,那么其他子段一定有一个大于平均值数,所以此次分割的分数最小一定是sum(nums) / m。
B: 其次是,最优解一定不大于sum(nums),这个很好理解,因为无论它如何分割,子段的最大值不会超过这个序列的总和。
3、由2可知,我们已经知道解的范围,现在只要枚举这些值,选择最优解即可。所以可以使用二分查找,以确定那个值是最优解。
例如:
nums, m = [1, 4, 2, 3, 5], 3
sum(nums) / m | sum(nums) | ||||||||||
枚举可能值 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
Python实现:
# Bytedance AI Camp 2018 -编程题2-(北京时间)05月26日 09时30分-05月26日 12时00分
# 解题思路 二分查找(Binary Search)
# 将数组nums拆分成m个子数组,每个子数组的和的范围在 [sum(nums) / m,sum(nums)]内
# 又因为数组nums中只包含非负整数,因此可以通过二分法在上下界内搜索最优解。
# 时间复杂度O(n * log m),其中n是数组nums的长度,m为数组nums的和(准确的说应该是sum(nums)-sum(nums)/m)
# @Time :2018/5/27
# @Author :LiuYinxing
class Solution(object):
def splitArray(self, nums, m):
"""
:type nums: List[int]
:type m: int
:rtype: int
"""
size = len(nums)
high = sum(nums) # 确定上界
low = high // m # 确定下界 (下取整)
while low <= high:
mid = (low + high) // 2 # (下取整)
n = m
cnt = 0
valid = True
for x in range(size):
if nums[x] > mid: # 如果发现数列里面有一个大于目标解的,说明真正的解在右区间,即继续搜索右区间
valid = False
break
if cnt + nums[x] > mid: # 进行一次分割, 并初始化 n, cnt
n -= 1
cnt = 0
cnt += nums[x] # 统计每次分割的小区间的和,
if n == 0: # n == 0 说明划分的段数超过了 m,说明真正的解在右区间,即继续搜索右区间
valid = False
break
if valid: # 确定下一个要搜索的区间范围
high = mid - 1 # valid == True 说明最优解还可以再小,即在左区间里面
else:
low = mid + 1
return low
if __name__ == '__main__':
solu = Solution()
nums, m = [1, 4, 2, 3, 5], 3
print(solu.splitArray(nums, m))
发现问题,请留言指正哦