Problem b [Bzoj 2301,HAOI2011]

题目地址请点击——


Problem b


Description

对于给出的 n 个询问,每次求有多少个数对 (x,y),满足 axbcyd,且 gcd(x,y)=k


Input

第一行一个整数 n,接下来 n 行每行五个整数,分别表示 abcdk


Output

n 行,每行一个整数表示满足要求的数对 (x,y) 的个数


Sample Input

2
2 5 1 5 1
1 5 1 5 2


Sample Output

14
3


HINT

100% 的数据满足:1n500001ab500001cd500001k50000


Solution

首先,设 f(x,y) 表示 a<=xb<=y,且 gcd(x,y)=1 的数对对数。

所以 ans=f(be,de)f(be,c1e)f(a1e,de)+f(a1e,c1e) (容斥原理)。

这样,我们就可以像上一道题一样,求出答案即可。


Code

#include <iostream>
#include <cstdio>

#define LL long long
#define Min(x,y) ((x)<(y)?(x):(y))

using namespace std;

LL T,ans;
LL a,b,c,d,e;
LL sum[500100];

//LL nxt[50010];

short miu[500010];
LL prime[500010];
bool no_prime[500010];

void f(LL fa,LL fb){
    if(fa>fb)swap(fa,fb);
    for(LL i=1,it;i<=fa;i=it+1){
        it=Min(fa/(fa/i),fb/(fb/i));
        ans+=((fa/i))*((fb/i))*(sum[it]-sum[i-1]);
    }
}

int main(){

    scanf("%lld",&T);

    miu[1]=1;

    for(LL i=2;i<=50001;i++){
        if(!no_prime[i]){
            prime[++prime[0]]=i;
            miu[i]=-1; 
        }
        for(LL j=1;prime[j]*i<=50001;j++){
            no_prime[prime[j]*i]=true;
            if(i%prime[j]==0){
                miu[prime[j]*i]=0;
                break;
            }
            miu[prime[j]*i]=-miu[i];
        }
    }

    for(LL i=1;i<=50001;i++)sum[i]+=sum[i-1]+miu[i];

    while(T--){
        ans=0;
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&e); 
        f((a-1)/e,(c-1)/e);
        LL tmp1=ans;ans=0;
        f((a-1)/e,d/e);
        LL tmp2=ans;ans=0;
        f(b/e,d/e);
        LL tmp3=ans;ans=0;
        f(b/e,(c-1)/e);
        LL tmp4=ans; 
        printf("%lld\n",tmp3-tmp4-tmp2+tmp1);
    }

    return 0;
}
发布了193 篇原创文章 · 获赞 160 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览