POJ - 1061 青蛙的约会

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

题目大意:两只青蛙的初始位置分别为x和y,然后速度为m和n,圆圈的长度为L,为最少他们需要多长时间可以碰面。

思路:https://blog.csdn.net/destiny1507/article/details/81750874(扩展欧几里得)

//扩展欧几里得
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll r=exgcd(b,a%b,x,y);
    ll t=y;
    y=x-(a/b)*y;
    x=t;
    return r;
}
int main()
{
    ll x,y,m,n,l;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
        int d=gcd(n-m,l);
        if((x-y)%d!=0)
        {
            printf("Impossible\n");
            continue;
        }
        ll a=n-m;
        ll b=l;
        ll c=x-y;
        a/=d;
        b/=d;
        c/=d;
        ll xx,yy;
        exgcd(a,b,xx,yy);
        xx*=c;
        if(b<0)
            b=-b;
        xx=(xx%b+b)%b;
        printf("%lld\n",xx);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值