两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5Sample Output
4
题目大意:两只青蛙的初始位置分别为x和y,然后速度为m和n,圆圈的长度为L,为最少他们需要多长时间可以碰面。
思路:https://blog.csdn.net/destiny1507/article/details/81750874(扩展欧几里得)
//扩展欧几里得
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll t=y;
y=x-(a/b)*y;
x=t;
return r;
}
int main()
{
ll x,y,m,n,l;
while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
{
int d=gcd(n-m,l);
if((x-y)%d!=0)
{
printf("Impossible\n");
continue;
}
ll a=n-m;
ll b=l;
ll c=x-y;
a/=d;
b/=d;
c/=d;
ll xx,yy;
exgcd(a,b,xx,yy);
xx*=c;
if(b<0)
b=-b;
xx=(xx%b+b)%b;
printf("%lld\n",xx);
}
return 0;
}