LeetCode239 滑动窗口最大值(Java)

LeetCode239 滑动窗口最大值

题目

image-20231008181305069

思路
  • 暴力枚举法

由题目可以想到,每次要找窗口内的最大值,所以通过不断移动窗口位置,通过队列可以轻松找到最大值:

public int[] maxSlidingWindow(int[] nums, int k) {
        //1.创建一个数组用于保留每次滑动窗口的最大值
        int[] a = new int[nums.length - k  + 1];
        //2.创建一个队列:用于比较一个滑动窗口的最值
        Queue<Integer> queue = new LinkedList<>();
        //3.遍历数组元素
        for (int i = 0; i < (nums.length - k + 1); i++){
            for (int j = i; j < i + k; j++){
                if (queue.isEmpty()) {//当队列为空,直接将其入队
                    queue.offer(nums[j]);
                }else {//如果队列不为空,将元素进行比较,使得队列永远只保留最大值
                    if (queue.peek() < nums[j]){
                        queue.poll();
                        queue.offer(nums[j]);
                    }
                }
            }
            a[i] = queue.poll();
        }
        return a;
    }

这段代码的时间复杂度为 O(n^2),其中 n 是数组的长度。通过分析可以发现,内层循环是一个固定大小的循环,每次循环需要比较窗口大小的元素。而外层循环是一个变化的循环,从索引0到索引nums.length - k进行遍历。在每次外层循环的迭代中,内层循环需要执行 k 次。所以不出意外,会出现超出时间限制的问题,所以只能另辟蹊径。

  • 单调队列解决滑动窗口问题

单调队列:一种特殊的队列数据结构,它在队列的基础上增加了一个单调性的要求。单调队列通常用于在一个滑动窗口中找到最大或最小值,或者解决其他类似的问题。它的主要特点是队列中的元素按照一定的顺序排列,可以保持队列中的元素按照递增或递减的顺序排列。

特点:单调队列在数据入队时,会对数据进行处理,使得队列内数据保持递减

image-20231008182901443

5入队时,会将4,3,2出队,再将5入队,这样不难看出,队头元素则为最大元素,这与题目如出一折,而且每次只要移动依次窗口,便可知道窗口内的最大值,所以时间复杂度只有O(n),这样就不会出现超时的问题。

image-20231008191345024
单调队列的实现

/**
     * 创建单调队列
     */
    static class MonotonicQueue {
        private LinkedList<Integer> queue = new LinkedList<>();

        public int peek(){
            return queue.peekFirst();
        }

        public int pop(){
            return queue.pollFirst();
        }

        public void offer(Integer value) {
            //当队列不为空,并且队列最后的元素小于添加的元素
            while (!queue.isEmpty() && queue.peekLast() < value){
                queue.pollLast();//将小于要添加的元素删除
            }
            //添加元素
            queue.offerLast(value);
        }

Java代码实现滑动窗口求最大值

public int[] maxSlidingWindow1(int[] nums, int k) {
        //模拟单调队列
        LinkedList<Integer> deque = new LinkedList<>();
        //用于存储最大值
        int[] result = new int[nums.length - k + 1];
        for (int i = 0; i < nums.length; i++) {
            //不为空,进行大小判断入队
            while (!deque.isEmpty() && deque.peekLast() < nums[i]){
                deque.pollLast();//将小于要添加的元素删除
            }
            deque.offerLast(nums[i]);//入队操作
            //2.当遍历k个元素之后,进行保存
            if (i >= k - 1){
                result[i - k + 1] = deque.peekFirst();
                //当窗口内的首元素超过窗口长度时要剔除
                if (deque.peekFirst() == nums[i - k + 1]){
                    deque.pollFirst();
                }
            }
        }
        return result;
    }
根据引用\[1\],可以使用暴力解法来求解滑动窗口最大值。具体的做法是,遍历数组,对于每个窗口,使用一个内部循环来找到窗口中的最大值,并将其存储在结果数组中。时间复杂度为O(n*k),其中n为数组长度,k为窗口大小。 根据引用\[2\],还可以使用队列来求解滑动窗口最大值。具体的做法是,使用一个双端队列来维护一个单调递减的窗口。遍历数组,对于每个元素,首先判断队头是否在滑动窗口范围内,如果不在,则将其从队头移除。然后,将当前元素与队尾元素比较,如果当前元素大于队尾元素,则将队尾元素移除,直到队列为空或者当前元素小于等于队尾元素。最后,将当前元素的索引插入队尾。如果滑动窗口的元素个数达到了k个,并且始终维持在窗口中,就将队头元素加入答案数组中。时间复杂度为O(n),其中n为数组长度。 综上所述,可以使用暴力解法或者使用队列来求解leetcode滑动窗口最大值。 #### 引用[.reference_title] - *1* *3* [leetcode239. 滑动窗口最大值](https://blog.csdn.net/kkkkuuga/article/details/124829581)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Leetcode#239. 滑动窗口最大值Java解法)](https://blog.csdn.net/paranior/article/details/114890555)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值