1、特征值与特征向量:通过来计算
2、矩阵的最小多项式:通过特征多项式计算
3、矩阵的迹:全体特征值的和(主对角线元素的和)tr(AB)=tr(BA)
4、Schmidt正交化:
5、向量 范数:
p=1,各向量模长之和,p=2,欧氏距离,p=,模最大值
6、矩阵范数
列和范数,
行和范数,
谱范数
7、矩阵的谱半径:特征值绝对值的最大值(思考:谱半径和范数的关系)
8、矩阵函数值的求法:
(1)待定系数法
(2)对角形法
(3)Jordan标准型法
9、函数微分
10、矩阵分解
(1)LDU分解:方阵
(2)QR分解:正交化法、Givens法、Householder法 ,需要是非奇异矩阵
Givens:
Householder:
(3)满秩分解:通过Hermite标准型
(4)奇异值分解:,任何矩阵都可以
(5)Cholesky分解
11、特征值的界
12、直积
13、投影矩阵
14、{1}-逆
15、加号逆
16、方程组的极小范数解和极小范数最小二乘解