spss——主成分分析详解

本文介绍了主成分分析(PCA)——一种非监督学习的降维方法,它通过特征值分解简化数据。PCA用于去除方差小的特征,保留关键信息,并在SPSS中演示了如何处理缺失值、选择主成分及生成得分。标准化步骤也详细阐述了计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

  • 一个非监督学习的降维方法
  • 只需要特征值分解,就可以对数据进行压缩,去噪
  • 旨在利用降维思想,把多指标转化为少数几个的综合指标
  • 每个主成分都能够反映原始变量的大部分信息,且信息不重复

应用场景

在一个图像矩阵中,有些元素特征不明显,很难用来做识别,而有些元素特征很明显,表明其方差很大(元素的方差可以度量其相对整个样本的离散度),这些元素就可以作为图像识别的主要依据,

PCA的作用就是,去除那些方差小,特征不明显的维,保留方差大,特征明显的维

优缺点

优点

仅仅需要以方差衡量信息量,不受数据集其他因素的影响

各主成分正交,

计算方法简单,主要运算是特征值分解,易于实现

缺点

主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强

方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响

spss实例

1、如果有缺失值,要先对数据进行处理
在这里插入图片描述
2、将处理好后的数据导入spss
在这里插入图片描述

3、找到主成分分析
在这里插入图片描述
4、将除分类列外其他导入,我的这个案例中,有一列考核列,也不需要放入,因为不属于影响因素
在这里插入图片描述
5、勾选系数:因为要生成成分得分系数矩阵进行最后的得分计算
在这里插入图片描述
6、勾选碎石图:可以更直观的主成分分布,点击确定
在这里插入图片描述
在这里插入图片描述
点击确认后经过计算。导出结果为
在这里插入图片描述
7、观察总方差解释图:提取提取载荷平方和的个数,就是主成分个数,最后一个主成分的占比就是选取的所有的主成分的占比总和
在这里插入图片描述

8、将原始特征数据进行标准化

在这里插入图片描述
勾选:将被抓另存变量
在这里插入图片描述
在这里插入图片描述
9,通过系数得分矩阵和标准化数据进行对应相乘

在这里插入图片描述

计算过程

在这里插入图片描述
x就是所有的特征变量
在这里插入图片描述
f 1 = − 0.073 ∗ X 1 + − 0.0008 ∗ X 2 ) . . . + 0.203 ∗ X 11 f1 = -0.073 * X1 + -0.0008*X2)...+0.203*X11 f1=0.073X1+0.0008X2...+0.203X11
f 2 = − 0.372 ∗ X 1 + − 0.157 ∗ X 2 ) . . . − 0.123 ∗ X 11 f2 = -0.372* X1 + -0.157*X2)...-0.123*X11 f2=0.372X1+0.157X2...0.123X11
F = ( 23.2 / 70.3 ) f 1 + ( 14.0 / 70.3 ) f 2... F = (23.2 /70.3 )f1 + (14.0/70.3)f2... F=23.2/70.3f1+(14.0/70.3)f2...

在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值