2025美赛C题第一题大致思路

c题是看上去比较符合传统数学建模的一道题,应该也是属于比较好写的一类。

问题重述

本问题要求我们基于2024年巴黎夏季奥运会的奖牌榜数据以及其他历史奥运会的数据,构建一个数学模型来预测各国在2028年美国洛杉矶夏季奥运会上的表现。该模型需要考虑以下几个方面:

  1. 奖牌数建模与预测

    • 构建一个模型,能够预测每个国家的金牌数量和总的奖牌数量。
    • 评估模型的不确定性/精确度,并提供衡量模型性能的方法。
    • 预测2028年洛杉矶奥运会的奖牌榜情况,包括所有结果的预测区间。
    • 分析哪些国家的成绩最有可能提高或下降,并给出理由。
    • 对于尚未获得过奖牌的国家,预测有多少个国家可能在下届奥运会中赢得首枚奖牌,并给出这一估计的概率。
    • 研究特定奥运会的项目(数量和类型)对国家奖牌数的影响。
    • 探索哪些运动项目对于不同国家最为重要。
    • 分析本国选择的项目如何影响最终的结果。
  2. “伟大教练”效应的研究

    • 搜索数据以寻找由著名教练员转移执教国所引起的变化的证据。
    • 估计这种效应对奖牌数的具体影响。
    • 选择三个国家,确定它们应投资于“优秀”教练的体育项目,并估算其对奖牌数的潜在影响。

针对任务一 

我们可以思考当年的主办国是否可以对本国队伍的奖牌数产生影响,因为一般来说在主场都存在优势。

1. 数据预处理与特征工程

数据整合

  • 合并历史奖牌榜、主办国信息、每届奥运会项目数量及类型,形成面板数据(国家-年份层面)。

  • 添加变量:

    • Host(虚拟变量,1=主办国,0=其他)

    • Event_Change(项目数量变化,当前届项目数 - 上届项目数)

    • Past_Medals(过去3届奖牌数的移动平均)

    • Country_Sport_Strength(国家在特定项目的历史奖牌占比)

处理首次参赛国家

  • 对于无历史奖牌的国家,使用其运动员的个人数据(如参赛项目、历史排名)构建特征:

    • Athlete_Top8_Rate(运动员进入前8名的比例)

    • Focus_Sport_Alignment(该国运动员主攻项目与当届新增项目的匹配度)

2. 模型构建

奖牌数预测模型(金牌和总数)
采用 面板负二项回归 处理过离散的计数数据:

\log(\lambda_{it}) = \alpha + \beta_1 \text{Past\_Medals}_{i,t-1} + \beta_2 \text{Host}_{it} + \beta_3 \text{Event\_Change}_t + \gamma_i + \epsilon_{it}

  • 因变量:国家 ii 在年份 tt 的奖牌数 yityit​(服从负二项分布)

  • 自变量

    • Past_Medals:国家 ii 过去三届奖牌数的加权平均(近期权重更高)

    • Host:主办国效应(系数 β2​ 预期为正)

    • Event_Changet:项目数量变化(影响奖牌池大小)

    • γ:国家随机效应(捕捉未观察到的国家特征)

  • 参数估计:极大似然估计(MLE),使用历史数据拟合。

首次获奖国家预测模型
采用 Logistic回归 估计国家 ii 在下一届获得首枚奖牌的概率:

P(\text{First\_Medal}_i = 1) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 \text{Athlete\_Top8\_Rate}_i + \theta_2 \text{Focus\_Sport\_Alignment}_i)}}

  • 特征

    • Athlete_Top8_RateiAthlete_Top8_Ratei​:该国运动员在近两届进入前8名的比例

    • Focus_Sport_AlignmentiFocus_Sport_Alignmenti​:该国重点项目的运动员数量与当届新增项目的重合度(如新增滑板,该国是否有大量滑板选手)

 

3. 模型验证与性能评估

奖牌数预测模型

  • 时间序列交叉验证:以1984-2016年为训练集,预测2020和2024年数据(作为测试集),计算:

    • MAE(平均绝对误差):衡量预测值与实际值的平均偏差

    • RMSE(均方根误差):惩罚较大误差

    • Coverage Rate:预测区间(如95%)覆盖实际值的比例

根据这些误差,使用多模型对比,去寻找最优的模型 

首次获奖模型

  • ROC-AUC:评估分类器区分能力

  • Brier Score:衡量概率预测的校准程度

从运动员层面进行计算和预测,然后再合成 到国家层面 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值