2025数学建模美赛A题-F题全题目完整建模/文章/代码汇总

2025数学建模美赛A题-F题全题目思路(1.24更新)

鹿鹿团队快马加鞭,目前已经更新A-F题完整思路,篇幅有限,仅放出部分内容(仅放出ABEF题的部分内容),详细内容(含其他题目)也已经进行了更新,欢迎进一步获取。后续也会对更详细的建模过程。

由于赛程时间紧急,后续详细完整内容可能无法在CSDN及时同步更新,欢迎从文末小卡片处加群获取完整内容~


2025 MCM 问题 A:测试时光:楼梯的持续磨损

以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容

赛题分析

包括三个主要部分:

  1. 题目原文的完整中文翻译
  2. 整体分析与思路综述
  3. 针对题目所提出问题的逐项详细分析与可能的求解思路(并在最后结合常用的数学建模方法与算法进行扩展)

一、题目原文的中文翻译

2025 MCM 问题 A:测试时光:楼梯的持续磨损

石头象征着坚固与永久性,而被雕刻成的石料之所以在建筑中被广泛应用,正是因为其抵抗磨损的能力。尽管石头非常耐用,但它并非对磨损完全免疫。唯一比它更"顽强"的,是人们持续不断地使用它。

图 1:长期使用后出现不均匀磨损的台阶示例

用于建造台阶的石材或其他材料会长期遭受持续磨损,而且这种磨损可能是不均匀的。例如,在极为古老的庙宇和教堂中,一些台阶的中央区域比边缘被磨损得更严重,以至于台阶踏面不再保持水平,出现了弓形或凹陷。由于此类建筑往往历史悠久,人们在这个地点的活动也常常早于建筑物本身的建造时间,这给确定建筑物的确切建造日期带来了困难。此外,如果一座建筑物的建造期本就很漫长,并且在随后的岁月中经历了多次翻修或增建,那么准确确认楼梯的建造时间就更加复杂。

现在,考古学家希望从这些磨损的楼梯中获取一些信息。楼梯可由不同材料构成(例如石头或木材),有时我们仅有一个大概的建造时间范围,且不清楚结构中的哪段楼梯究竟属于何时修建。

除了关心楼梯的年代,考古学家也希望了解楼梯的使用流量与使用方式。比如:

  • 人们是否同时在楼梯上进行上行与下行活动?
  • 是否在某段时期中仅以某一方向为主?
  • 楼梯的使用频次如何?是短时间内大量人群集中使用,还是长时期内少数人持续使用?

你所在的团队需要构建一个模型,帮助确定在给定的一组磨损楼梯信息时,能得出哪些基本结论。你的模型应该能根据楼梯的磨损模式,为某一特定楼梯做出如下基本预测: - 楼梯使用的频率有多高? - 是否某一方向(上/下)使用明显更频繁? - 同时使用楼梯的人数大约是多少?例如,是否有人并排行走,还是所有人始终排成单列?

你可以假设考古学家能接触到该建筑结构,并能按照你所设计的测量方法获取所需数据。需要注意的是:测量应是非破坏性的、费用相对低廉,并且能由一支小型团队使用简单的工具来完成。请明确说明需要采集哪些测量数据。

此外,还有一些更复杂的问题。如果我们假设掌握了楼梯大致的建造年代,明确了其在不同时期的使用方式,以及对建筑中人们日常活动模式的推测,那么:

  • 磨损情况与已有的信息是否一致?
  • 楼梯的实际年代是多少?该估计可靠到什么程度?
  • 楼梯曾经经历了哪些维修或翻新?
  • 如果使用的是石材,那么磨损情况是否与考古学家所认定的原始采石场一致?如果使用木材,那么这种磨损是否与假定的树种类型和龄期相吻合?
  • 对于"某日常使用规模"的推断能告诉我们什么?比如,是否曾有大量人群在短时间内集中使用,或者是少数人长期使用?

术语表

  • Permanence: 持久性的状态或特质,指长久保持不变。
  • Impervious: 不受影响或损害的。
  • Non-destructive: 在对目标进行评估时,不会对目标物或材料本身造成损坏或破坏。

二、整体分析与思路综述

本题以楼梯的长期磨损为研究对象,要求从考古学视角推断出楼梯的使用历史与方式,并就楼梯建造年代、使用流量、使用方向偏好、材料来源、修缮情况等问题给出模型或分析结论。题目要求模型能够基于对楼梯物理磨损数据的采集,给出对以下核心问题的回答:

  1. 楼梯使用频率:每天或者每个时间段的使用次数是否较多?是集中式还是分散式?
  2. 使用方向偏好:是否同时存在上楼和下楼大规模人群?或者某些时期主要为单向通行?
  3. 同时使用人数:楼梯宽度上的磨损差异能否说明有人并肩而行,或始终单人通行?
  4. 是否与已有考古信息或历史推断相吻合:楼梯的磨损是否与推测的年代、使用情况、材料来源等一致?
  5. 对修缮或翻新的推断:从磨损痕迹与材料特征变化上,能否找出哪些地方曾被修复或替换?
  6. 材料来源:如果是石材或木材,是否与已知的供应地或特定森林资源吻合?是否能够根据纹理、微量元素、年轮(木材)等推断材料信息?

本题非常开放,涉及测量方法数据获取物理磨损机理历史考证统计推断模型构建等多学科内容。由于 MCM/ICM 本身是一项注重建模与解题思路的竞赛,我们可以遵循典型的数学建模流程来组织思路:

  1. 问题重述与理解
  2. 关键影响因素与假设
  3. 数据获取与测量方案
  4. 建立模型(或多模型组合)
  5. 模型求解或仿真
  6. 结果分析与验证
  7. 对更复杂问题的拓展讨论

题目要求我们在思维开阔的前提下,力求给出可行的可验证的建模思路。同时要注意题目强调了“非破坏性测量”和“可由少量人员、低成本完成”,这在实际中对我们的数据采集方案提出了约束。

三、针对题目所提出问题的逐项详细分析与求解思路

下面针对题目提出的主要问题进行逐项分析,并给出可能的建模思路与方法示例。最后将结合题目中列出的常见数学建模与算法工具,对潜在的技术路径进行扩展讨论。

1. 楼梯的使用频率

核心目标:确定楼梯被使用的总量与频次,尤其是“使用总人次”在时间维度上的分布。

思路

磨损量-使用量模型

  1. 将楼梯踏面在不同时期的磨损深度或形状变化,与“人员总踩踏次数”联系起来。
  2. 假设每个体重或平均负荷下的一次踩踏,导致材料某种程度的微量磨损。可用一个磨损函数 W(n) 来表示累计的使用次数 n 。
  3. 若可以通过非破坏性测量(如激光扫描、结构光测量或其他 3D 建模手段),获取楼梯某时刻和当前时刻的踏面轮廓,则可估算总的磨损量。结合材料的力学性质、折旧或磨损系数,可以反推“使用总人次”。

材料力学与磨损模型

  1. 石材、木材都有相应的磨损模型(如阿奇森磨损模型、Archard磨损定律等)。
  2. 对石材可结合硬度、脆性等属性,对木材则考虑木质纤维的削减或压痕。
  3. 通过此类物理-力学模型,将宏观磨损量与总人次或使用频率建立定量关系。

结合历史记录/考古时间线

  1. 若已知大致的楼梯使用时段,可将总踩踏次数在不同世纪或年代分摊,用时间序列方式(如马尔可夫预测、灰色预测或回归分析)去拟合使用曲线。
  2. 也可尝试挖掘不同时期(如节日或战争时期)的人流量峰值,用以判断“集中使用”或“分散使用”。

可能的数据需求

  • 楼梯踏面当前3D形变数据(中心凹陷量、边缘差值)
  • 材料物理参数(硬度、密度、磨损系数等)
  • 某些已知时期的台阶表面形状或档案数据(若存在历史测绘或旧照片,可提供参考) - 考古/历史事件线索(某时期人口规模、活动需求等)

2. 使用方向偏好(上行或下行)

核心目标:判断在楼梯使用过程中,是否上行和下行的使用率相当,或者在某个时期哪种方向占主导。

思路

踏面前后缘磨损差异

  1. 人在上楼时,脚掌容易在踏面后缘或中段发力;在下楼时,则更常踩在踏面前缘。
  2. 如果可以精细扫描踏面,比较前沿(靠近下一级台阶的边缘)与后沿(靠近上一级台阶的边缘)的磨损程度,就可能判断哪种方向主导。
  3. 结合材料力学或生物力学模型,估算人类踏步时的受力与施力位置。

流量模型

  1. 设定双向流量 和fup(t)和fdown(t) ,并考虑其随时间变化的差异。
  2. 一种可能做法:在“总磨损”相同的情况下,若在前缘处的磨损明显更深,则说明下行流量占比更大;反之亦然。
  3. 若能够建立一个分区磨损函数,将踏面表面分割为多个区域,分别统计磨损深度(如中心区 vs. 前缘区 vs. 后缘区)。再通过最小二乘拟合等方法来估计上、下行流量的比例。

历史/建筑功能信息

  1. 若建筑历史记载上某时期主要从某楼层搬运物资,大概率是单向(或上行为主)。
  2. 若是日常通勤性质,可能上、下行比较均衡。

3. 同时使用人数(并行或单列)

核心目标:判断楼梯是否常有多人并排通过(如两列、三列),还是主要是排成单列使用。

思路

踏面横向磨损分布

  1. 若长时间存在并排行走,踏面左、中、右的磨损程度可能比较均匀;
  2. 如果大多数时间只单列通行,则在某一侧或中间会产生一条主要磨损带,而其他区域相对磨损较小。
  3. 可将踏面横向方向离散为若干条带(例如左-中-右),分别测量磨损深度或凹坑形变。构建磨损分布模型,判断其分布特征是否与多列通过一致。

台阶宽度与人体平均步态

  1. 楼梯若过窄,难以并排通行。若宽度足够,则结合人群习惯(可能靠右行或并排行走)。
  2. 可在模型中引入一个概率分布: 踩踏横向位置分布函数P(踩踏横向位置=x)=分布函数, 通过观测结果(台阶上实际的凹槽形变)进行参数估计或拟合。

历史/功能资料

  1. 有的场所(如典礼场所、宫殿)可能容许并排行走;有的场景(如狭窄塔楼)只能单行。
  2. 若有局部翻新的证据,也需要考虑新旧材料的拼接对磨损形态的影响。

4. 与已有信息(年代、使用方式、日常生活模式)的一致性

题目更进一步要求,若我们对楼梯年代、使用方式和日常使用规模有一定先验信息(可能来自文献、口述历史、碳测年结果等),能否判定磨损是否与之相符。

思路

误差范围与可信区间

  1. 对于年代推断,往往会有一个置信区间(例如 ±50 年);对使用流量也会有平均值与方差。
  2. 可将从楼梯磨损模型中推断出的“使用总人次”或“主要使用时期”与先验信息做比较,看是否在合理范围内。
  3. 比如可以做一个统计检验(卡方检验、T 检验等),比较观测分布与模型分布是否显著不同。

多模型校验

  1. 不同模型(或不同假设)下推断的楼梯使用情况可能略有差别,可比较哪种模型与历史事实更契合。
  2. 如果有建筑风格或年轮分析(对于木材),也可作为第三方证据相互佐证。

5. 楼梯的实际年代及其可靠性

核心目标:结合磨损证据,给出楼梯建造年代的估计值或置信区间。

思路

材料年代学(石材/木材)

  1. 对于木材,可考虑年轮、碳-14 测定等方式(非破坏性要求下,可能仅能采集很少量木屑或做表面扫描)。
  2. 对于石材,或可用同位素分析或矿物成分分析,但必须符合非破坏性原则,难度较大。
  3. 若仅能结合磨损状态,则需要假设一个使用频率曲线,进而对累计磨损量做反演,估计最早使用时间或关键时点。

统计回归或时间序列模型

  1. 先收集不同时代类似楼梯的磨损量及其相应年代的数据样本(如果有足够大样本)。用回归方法或机器学习模型(如随机森林回归、支持向量回归等)对楼梯年龄进行预测。
  2. 给出年龄预测的区间估计或置信区间。

6. 维修或翻新的判定

核心目标:根据楼梯上磨损或材料痕迹的突变,或结合历史文献,推断是否出现过维修。

可能的思路

分段磨损数据对比

  1. 通过 3D 扫描,若发现某几阶台阶或某个区域的磨损深度与周围显著不一致,可能说明那部分曾经重做或被重新打磨。
  2. 不同批次石材或木材的纹理、化学成分等也可能有差异。

多阶段磨损模型

  1. 在单一材料和持续使用的情况下,磨损应该有随时间平滑累积的特征。若发现磨损突然中断或材料特性突变,说明可能发生过阶段性的更换或大修。
  2. 可以把磨损曲线当作分段函数,寻找拐点进行诊断。

7. 材料来源和一致性

核心目标:判断楼梯材料是否来自考古学家所怀疑的某个采石场或林地。

可能的思路

微观成分或纹理分析(如岩性、矿物成分、元素含量、晶体结构;或对木材年轮纹理、树种鉴别等)

  1. 符合非破坏性限制时,可能采用表面光谱扫描、XRF(X 射线荧光)扫描(若能保证低破坏或无损),或者高分辨率摄影测量。
  2. 与已知的样本库比对(比如某个采石场的石料具有特殊矿物组合)。

磨损方式是否与材料特性匹配

  1. 不同产地的石材硬度、颗粒结构会导致不同的磨损纹理或表面粗糙度变化。
  2. 如果考古学家怀疑的采石场材料与实际测试结果不符合,说明可能另有材料来源。

8. 人数使用模式:短期大量 vs. 长期少量

核心目标:鉴别是“在短期内大量使用,导致迅速磨损”,还是“在很长时期内慢慢积累磨损”。

可能的思路

非线性磨损模型

  1. 对于某些材料,短时间内高强度使用造成的磨损模式可能与长期小流量更迭不同。可能呈现疲劳损伤或显著塑性变形特点。
  2. 也可以把历史时间序列划分为若干阶段,通过假设每个阶段的人流量和踩踏强度,拟合总磨损状况,以确定更能匹配实际的使用模式。

微裂纹、表面纹理特征

  1. 高强度短期使用可能出现明显的冲击点或裂纹扩展痕迹。
  2. 长期小强度使用通常更平滑、更均匀的磨损。

结合其他考古证据

  1. 大规模集会或活动(如战争、盛典)留下的文献记录,可能与磨损集中爆发时段相对应。
  2. 若找不到大规模事件佐证,则更多倾向于长期使用结论。

四、结合常用数学建模与算法的思考

题目中列出了非常多的数学模型与算法,下面以“测量—数据处理—建模—验证”为主线,做一个思路上的整理。由于比赛中一般只需选取适合解题的若干方法,并给出论证即可,并非要全部使用。

  1. 测量与数据处理
  2. 图像处理/计算机视觉:利用激光扫描、结构光扫描或高分辨率摄影对楼梯踏面进行数字化,获取三维模型或深度图。再结合图像处理算法(如边缘检测、形状重建等)提取磨损曲面信息。
  3. 数据降维与聚类:如果采集到大量三维点云,可用PCA(主成分分析)简化数据,或做聚类分析(K-Means、DBSCAN)区分不同磨损区域。
  4. 磨损量-人流量预测模型
  5. 回归分析(线性回归、非线性回归、主成分回归):将磨损量作为因变量,人流量或使用次数等作为自变量,拟合出磨损系数。
  6. 时间序列分析(ARIMA、灰色模型、Markov 链):对楼梯使用在不同时段的流量波动进行预测,并与磨损情况匹配。
  7. 神经网络/机器学习:如果有足够历史数据,可以训练一个回归或预测模型,输入楼梯表面形态特征,输出累计人流量或使用时间。
  8. 方向偏好与并列使用
  9. 几何/空间分析:建立楼梯踏面的二维/三维网格模型,定义磨损函数 d(x, y) 。对该函数做极值或分布分析,以判断主要使用区。
  10. 图论或路径规划(若需要对人流在楼梯或建筑物内的行走路线进行更大范围建模,可能会用最短路径、网络流分析等概念,但这里不一定需要深入)。
  11. 最佳测量方案设计
  12. 优化模型:平衡测量精度、成本、工作量,或采用线性规划、整数规划等设计“最少点云采集方案”。
  13. 不确定性分析:对测量误差进行蒙特卡罗模拟,评估对最终结论的影响。
  14. 评价与验证模型
  15. 统计检验(T 检验、卡方检验、方差分析)比较不同假设下的模拟结果与实际测量数据的差异。
  16. 模糊综合评价/层次分析法(AHP):若要综合考虑多目标(磨损量、材料性质、历史记录、考古证据),可构建评价指标体系,对每个指标进行权重赋值与综合评分。
  17. 修缮分析/分段模型
  18. 分段回归/断点检测:识别楼梯磨损曲线中的突变点。
  19. 小波分析:可以用小波变换检测楼梯表面形态突变处,辅助判断修缮的痕迹。

五、总结与撰写建议

  • 问题背景复杂且跨学科:涉及材料科学、考古、历史、机械力学、数据分析等多个方面。对于竞赛而言,建议在论文中先做合理的简化假设(如材料匀质、已知硬度或磨损系数、忽略气候影响等),以便专注在可行的建模与结论上。
  • 数据获取方案与测量方法:竞赛解题报告中,通常要说明如何收集到所需的楼梯磨损数据。题目明确指出“非破坏、低成本、小团队”,所以常见的激光测绘或简单三维摄影测量是一个可行思路。要注意说明成本、精度以及具体可操作性。
  • 模型选择与结果分析:本题的关键是要搭建起“楼梯磨损”与“人群使用模式”之间的桥梁。可采用分层建模,比如: 1) 几何层面:提取楼梯踏面的形变特征; 2) 力学层面:将形变特征与踩踏次数、踩踏力分布关联; 3) 统计/预测层面:估算具体的使用频率、方向偏好、并列通行与否等; 4) 推断和验证层面:与先验信息比对,评价合理度。
  • 对题目“更多问题”的回答:在论文的后半部分或结论中,需要就“年代推断、修缮痕迹、材料来源”等做出讨论。可以是定性+定量相结合的方式。若要深入,可设计各自的子模型;若篇幅有限,可在思路层面给出分析框架即可。
  • 创新与复杂性:题目允许使用机器学习、深度学习或复杂网络等方法,但应确保与实际问题紧密结合,不要流于形式。比如,用卷积神经网络(CNN)来自动识别台阶表面的磨损形态,也是一条值得探索的思路。

参考性大纲示例

如果要写一篇完整的竞赛论文,可按如下大纲组织:

  1. 摘要(Summary):简要概括问题、主要方法、关键结果。
  2. 引言:介绍楼梯磨损的背景、意义及研究难点;本题的目标与主要研究内容。
  3. 问题分析与假设:罗列影响磨损和使用模式的各项因素,并根据竞赛需要作出适当假设。
  4. 测量与数据获取方案:说明如何通过非破坏性、低成本方式获取楼梯踏面几何数据以及材料属性数据。
  5. 模型建立
  6. 材料磨损模型:力学模型或经验模型;
  7. 人群使用模型:包括踩踏分布、方向流量、并列通行几率等;
  8. 综合模型:将磨损量与人群使用参数对接,建立核心方程或算法。
  9. 模型求解与仿真
    1. 可能采用数值模拟、统计回归、优化求解等工具。
    2. 针对不确定参数做敏感性或稳定性分析。
  10. 结果与讨论
    1. 回答题目中所提出的关键问题:使用频率、方向偏好、同时使用人数、年代推断、修缮与材料来源等。
    2. 与已有考古或历史信息进行对比验证。
    3. 讨论局限性与改进方向(如现实测量误差、模型简化、异质性材料等)。
  11. 结论:对主要发现进行概括,并对题目的“更多问题”给出指导性结论。
  12. 参考文献
  13. 附录(若有需要展示的计算细节、程序代码、图表等)
  14. AI 使用报告(若使用了生成式 AI 辅助)

六、结束语

本题具有鲜明的综合性与应用性特点,既要求结合对楼梯物理磨损的实际测量与材料特性分析,又需要将人群活动的社会历史信息纳入统计与模型推断。解题团队可以根据已有的知识背景和对考古学的理解,在力学-统计-历史之间搭建模型桥梁。比赛时建议适度聚焦在几个关键点(比如如何定量评估楼梯使用频率,如何区分上/下行方向磨损,如何判断是否曾有并排行走),并使用真实可行的测量与数据方法来支撑模型的合理性。在此基础上,结合适当的数学和计算机算法便能形成一套完整可行的解题框架。祝取得好成绩!

2025 MCM 问题 B:管理可持续旅游业

以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容

赛题分析

以下内容包括三个主要部分:

(1) 题目的中文翻译

(2) 对题目的整体分析与思路综述

(3) 对题目要求的逐项详细分析与求解思路。

本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系统全面的赛题分析与参考。

一、赛题中文翻译

以下是对 MCM 2025 B 题的全文翻译(含原文脚注中的网址引用):

题目:管理可持续旅游业(Managing Sustainable Tourism)

美国阿拉斯加州的朱诺(Juneau)拥有大约3万名居民,2023年却接待了创纪录的160万邮轮乘客,在最繁忙的日子里,多达七艘大型邮轮同时停靠,约有2万名游客[1]。虽然这些游客为该市带来了可观收入——约3.75亿美元[2],但也带来了与过度拥挤相关的问题,促使市政当局试图限制游客数量。具有讽刺意味的是,朱诺最主要的景点之一——门登霍尔冰川(Mendenhall Glacier)——却在退缩,而这在一定程度上是由过度旅游导致的变暖温度所引起。自2007年以来,该冰川已经后退了相当于8个足球场的长度,令当地许多人担忧:一旦冰川消失,游客和相应的收入也将消失[3]。值得庆幸的是,朱诺还有其它景点——例如观鲸(whale watching)和雨林(rainforests)——只要能制定并实施可持续旅游计划,朱诺仍可以维持其作为旅游目的地的地位。

最近的报告[4]强调了旅游业的隐性成本以及在世界范围内的许多旅游目的地中,为保护自然和文化资源、构建可持续的旅游业而需要管理这些成本的重要性。这些隐性成本包括对当地基础设施(例如饮用水供应、废物管理)的压力,以及在位于环境敏感地区的旅游目的地所产生的整体碳足迹的增加。当地人口也面临着住房供应与成本、过度拥挤,以及游客行为失当等压力。为了缓解这些负担,各地采取了提高酒店税、征收游客费、限制每日游客数量、限制酒精销售和消费等多种措施。通过提高税收所获得的收入被用于保护工作、基础设施改善以及社区项目的开发。虽然一些依赖旅游业的当地人担心额外费用会吓跑游客,希望能吸引更多游客以扩大自身收入,但也有许多当地人对过度旅游不满,选择离开或抗议游客。

  • 需要完成的任务:
  • 为阿拉斯加州朱诺市构建一个可持续旅游业的模型。你可能需要考虑的因素包括:游客数量、整体收入,以及为稳定旅游业所采取的措施。需要明确说明哪些因素是优化目标,哪些因素是约束条件。并包括一个针对额外收入的支出方案,展示这些支出是如何在你的模型中形成正反馈,进一步促进可持续旅游的发展。需要提供敏感性分析并讨论最重要的因素。
  • 说明如何将你的模型适配到另一个同样受到过度旅游影响的旅游目的地。不同地点的选择如何影响最重要的干预措施?如何利用你的模型来推广游客较少的景点/目的地,以实现更好的平衡?
  • 向朱诺旅游委员会撰写一页的简短备忘录,概述你的预测结果、各种措施的效果,以及你针对如何优化结果所提出的建议。
  • 术语表:
  • 可持续旅游(Sustainable tourism):涉及旅游体验的方方面面,关注经济、社会和环境议题,以及改善游客体验、满足当地社区需求。可持续旅游应兼顾环境保护、社会公平和生活质量、文化多样性,以及能够提供就业与繁荣的活力经济。
  • 碳足迹(Carbon footprint):通过吨(CO2当量)来比较某项活动、产品、公司或国家排放的温室气体总量。
  • 基础设施(Infrastructure):一个社会或机构正常运行所需的基本物质和组织结构设施(如建筑、道路、电力等)。
  • 参考文献:
  • https://abc7.com/post/juneau-alaska-cruise-ship-limits-overtourism/15048713/
  • https://juneau.org/wp-content/uploads/2024/01/CBJ-Cruise-Impacts-2023-Report-1.22.24.pdf
  • https://alaskapublic.org/2023/08/07/crammed-with-tourists-juneau-wonders-what-will-happen-as-mendenhall-glacier-recedes/
  • https://www.thetravelfoundation.org.uk/invisible-burden/

二、整体分析与思路综述

本题聚焦于“可持续旅游(Sustainable Tourism)”这一主题。朱诺在过去几年接待了大量游客,带来可观经济收益的同时,也对当地环境、基础设施及居民生活质量造成了不良影响。因此,题目要求构建一个综合模型来平衡经济收益与各类可持续发展目标,包括环境保护、基础设施承载力与社会福利等。

1. 建模思路的关键要素

经济收入与游客数量

游客数量与旅游收入往往呈正相关,但数量过多会导致环境与社会成本增加。需要在游客规模与可支配的旅游收入之间寻找平衡点。

基础设施与资源承载力

包括饮用水供应、废物处理、交通拥堵、住宅成本以及基础设施所面临的维护及扩建压力。

环境影响

碳排放/碳足迹:海陆空交通的碳排放、当地能源消耗、游览活动带来的生态干扰。

冰川退缩:与全球变暖有密切关联。过度旅游导致的排放可能加剧地区气候变化。

社会影响

当地居民生活成本(住房价格、消费成本等)。

文化与社会的冲击(如游客造成的噪音、扰民、文化习俗冲突等)。

当地人对于旅游业的满意度/抵触情绪。

调控与干预措施

提高酒店税、增加游客费/门票费、每日游客总量限制、限制酒精销售等。

将调控所产生的额外税收用于基础设施改善、环境保护、社区福利(如住房补贴、社会保障等)。

利益相关者博弈

依赖旅游业的从业者倾向于欢迎更多游客。

其他受环境和社会压力影响的当地人则希望限制游客。

政府需要在税收、财政收入、地方经济、环境保护和社会满意度之间实现平衡。

2. 建模方向与模型框架

基于多目标的需要,该问题可考虑使用:

  • 多目标规划模型(经济收益最大化、环境代价最小化、社会满意度最大化)。
  • 动态模型(如系统动力学,分析游客数量、环境压力、财政收入和基础设施建设之间的动态反馈)。
  • 可持续指标体系+评价模型(如因子分析、熵权法、层次分析法等,将多个指标整合为可持续性评分)。
  • 机器学习/深度学习预测
  • 对游客数量、环境指标、经济收益的时序预测(如ARIMA, LSTM等),预估不同政策下的变化趋势。
  • 优化算法(遗传算法、粒子群算法等)搜索多目标Pareto最优解。

3. 敏感性分析与鲁棒性

在建立模型后,需要对关键参数(如游客需求弹性、碳排放因子、税率)进行敏感性分析,找出对系统影响最大的驱动因素,评估政策在不确定性下的有效性。

4. 推广与适应性

题目最后要求我们展示如何将该模型推广到其他遭受过度旅游冲击的地区,并撰写一份简短备忘录给旅游委员会做决策参考。这说明模型需具有通用性,能在不同地区(海岛、历史名城、自然保护区等)进行适当调整。

三、逐项问题的详细分析与求解思路

下面按照题目要求,针对每个子问题逐个做分析,并给出可能的建模方案以及相应的算法建议。

(1)建立朱诺可持续旅游业模型

1.1 模型目标与约束

  • 目标函数
  • 经济目标:最大化净收入 R
  • 旅游总收入(门票、住宿、餐饮、交通、购物等)减去旅游相关的运营成本与隐性社会成本(如果可量化)。
  • 环境目标:最小化环境负面影响 E
  • 可以用碳排放量、自然环境退化指数等表征。
  • 社会目标:最大化当地居民满意度 S
  • 指标可参考:住房可负担性、交通便利度、拥挤度、社会福利等。

常见的多目标形式例如: max[f1(R),−f2(E),f3(S)]. 或者可将多目标归一化后加权求和,具体权重可通过AHP(层次分析法)或熵权法等方法确定。

主要约束

游客数量与承载力 N≤Nmax

其中 Nmax 可基于基础设施、每日承载能力或环境容量设定。

财政平衡约束

新收税费的分配和支出:必须保证投向环保、基础设施、社会福利的资金之和不超过政府税收盈余。

环境指标约束

设定碳排放或废物处理“阈值”。例如: CO2Emission≤Threshold

社会指标约束

保证当地居民基本福利(如住房供应、最低满意度等),可以抽象成: S≥Smin 。

1.2 额外税收的使用方案与正反馈

假设:征收的税收收入或酒店费收入等,按照比例分配到不同的支出项目: Tenv=αenv⋅T,Tinfra=αinfra⋅T,Tsocial=αsocial⋅T,

其中 αenv+αinfra+αsocial=1 ,T为额外税收总额。

正反馈机制

当更多资金投入环境保护时,可以降低环境负面影响,进而提高旅游景点的长期可持续吸引力。

当基础设施得到改善(如交通、废物管理、水电供应等),可提升游客体验,同时缓解当地居民的不满。

当社区福利得到改善(如住房补贴、公共服务),可提升社会满意度,从而减少对游客的抗议或冲突。

动态建模思路

系统动力学(System Dynamics)

令状态变量包括:游客量 N(t) 、环境指数 E(t) 、政府资金 F(t) 、社会满意度 S(t) 等。

建立差分或微分方程,反映支出与环境、社会指标的关系;对游客量可基于市场需求、口碑与环境吸引力等建立反馈回路。

  • 离散事件或排队论:如针对交通拥堵或景点排队进行模拟,辅助决策。

1.3 敏感性分析

  • 关键影响因子
  • 税率:税/费的提高是否会过度打击游客需求?是否会导致收入整体下降?
  • 环境阈值:若环境约束更严格时,允许的游客最大值N_{\max}将下降,对收入的影响如何?
  • 居民满意度权重:社会目标在多目标中的权重变化,如何影响政策取向?
  • 游客需求弹性:价格提高时,游客量下降的幅度(需求弹性系数)。
  • 方法
  • 单因素敏感性分析:在保持其他参数不变的情况下,改变某一因素观察目标值变化。
  • 多因素敏感性分析:采用正交实验设计/拉丁超立方采样对多参数进行采样,评估模型的整体敏感性。

(2)模型的推广与在其他旅游地的应用

2.1 不同地点选择的重要因素

每个旅游目的地的资源禀赋、环境保护重点、社会结构和文化背景都不同,但一般都会涉及“经济-环境-社会”三大要素。区别在于各自的权重和主要矛盾。

  • 例如
  • 海岛型目的地:淡水资源紧缺,废物处理和海洋生态环境敏感;游客主要依赖飞机/轮船,碳排放较高。
  • 历史古城型目的地:文物、文化遗产保护是核心,基础设施改造受限。
  • 自然保护区:生物多样性、生态平衡是主要关注点,对游客活动范围和数量的限制更严格。

2.2 选择不同政策时的重要性差异

  • 位置与交通:若主要游客需要飞机抵达,碳排放的影响更大;若是陆地交通方便,环境影响重点可能转向拥堵与大气污染。
  • 经济与社会结构:居民是否高度依赖旅游?当地是否存在农业、渔业或其他替代产业?对旅游业的依存度越高,则限制游客的阻力越大。
  • 当地文化与法律:一些地方对酒精消费或噪音管制更严,也有地方更重视历史文化遗产保护,对游客数量/行为会有专门的法律约束。

2.3 利用模型来推广游客到其他景点/时段

  • 思路
  • 通过动态定价/宣传,将游客重新分散到非旺季/其他景点:
  1. 非旺季优惠:降低门票或住宿费用,引导游客错峰出行。
  2. 强化次级景点的宣传:在旅游宣传中突出一些“未饱和景点”,给出一定交通优惠或导游折扣,引导游客分散。
  3. 预约制度:让游客提前预订景点参观时段,控制峰值流量。
  • 模型结合: 在建模过程中对不同景点或不同季节的游客行为进行预测和优化,把总体客流合理分配,以减轻主要景点和高峰期的压力,同时保持总收益相对稳定并提升整体满意度。

(3)给朱诺旅游委员会的一页备忘录

在正式的提交文档中,需要有一页简短的“备忘录”,可以包含以下要点:

  1. 当前问题概述
  2. 现状:游客量激增、环境与社会压力巨大、冰川退缩。
  3. 可预见风险:若冰川消失或地方居民抵制,旅游收入可能长期下滑。
  4. 核心预测
  5. 若不采取措施,环境恶化和社会矛盾在若干年后会导致游客下降或其他负面影响。
  6. 采用某些可持续措施(增加税费、限制游客量、基础设施改善)后,可维持或提升旅游吸引力的可持续发展。
  7. 关键措施效果
  8. 酒店税/门票费:在一定范围内不会严重损失游客量,但能产生可观收入用于改善环境与民生。
  9. 限制游客峰值:能有效减缓拥堵、保护环境;需通过多渠道引导游客分流。
  10. 生态与社区投资:提高居民满意度、保护景点长期吸引力。
  11. 优化建议
  12. 多目标平衡:兼顾财政收入、环境保护与社会满意度的综合目标。
  13. 长期规划:针对冰川退缩可能带来的长期影响,进一步提升其他旅游项目(观鲸、雨林生态游等)的吸引力。
  14. 政策灵活性与动态调整:定期监测游客满意度、居民满意度和环境指标,根据数据调整政策。

四、总结

在以上分析中,我们将可持续旅游问题抽象成包含经济、环境与社会三重目标的多目标优化或系统动力学问题。它要求我们充分考虑:

1. 经济-社会-环境三位一体的平衡;

2. 政策干预所产生的正面与负面影响;

3. 动态反馈不确定性(尤其要进行敏感性分析)。

接下来,若在实际建模中,需要基于具体数据(如朱诺历年游客量、邮轮次数、当地居民满意度调查等)对模型进行校正和参数估计。为提升模型的预测准确性,可结合机器学习(如ARIMA、LSTM)对游客量、环境指标等进行时序预测,然后再嵌入到系统动力学或多目标规划框架中进行综合分析与优化。

最终,我们希望通过在模型中引入合理的“可持续指标体系”与“税收/费用/限流”等政策工具,平衡短期与长期利益,确保朱诺在未来仍能保持稳定的旅游收入并且具备健康的生态与社会环境。这不仅适用于朱诺本地,对其他面临过度旅游压力的目的地亦具有借鉴意义。

2025 ICM 问题 E:为农业让路(Making Room for Agriculture)

以下内容包括:

  1. 赛题原文的中文翻译(带有适当的段落、列表和“图表/表格”格式的重排示例)
  2. 整体分析与思路概述
  3. 针对题目所提各个要点的详细建模思路与解题框架
  4. 可能的创新与扩展

一、E题题目(中文翻译)

2025 ICM

问题 E:为农业让路(Making Room for Agriculture)

背景(Situation)

一片生机勃勃的森林——这里曾长满参天大树,拥有各种各样的鸟类、昆虫和动物——被清理掉,用于开垦农业。曾经繁荣的生态系统消失了,取而代之的是一排排庄稼。
土地开始发生变化——曾经富饶的土壤逐渐退化,害虫入侵了农作物。为应对虫害,农民使用了化学药剂,但这打破了原本大地的平衡。森林里原本复杂的生命网络被摧毁,取而代之的是以农业生态系统为基础的人类驱动的新食物网。
在一个成熟的农业系统中,确实可能存在蝙蝠、鸟类和其他物种,但要达到这种状态,需要生态系统经过一定的演替和成熟过程。

模型与分析(Model and Analyze)

全球各地都有类似的森林转变为农田的情形。作为“成熟农业实践考虑(COMAP)”小组的一员,你被要求构建一个从“森林到农田”的栖息地演变模型。你的上级希望你分析森林被清理后,在全新转换的农田生态系统中,随着农作物选择和生态系统的演变,生态系统会如何阶段性地变化。你的模型既要考虑自然过程,也要纳入人类决策因素。

你所要做的是:从一个“刚刚清理出的森林区域”出发,开始构建这个新建农业生态系统的模型,随着物种组合和农业实践的变化,追踪系统的演变过程。你可以基于合理假设构建一个虚拟场景,或者参考真实的历史数据。你在分析时可以考虑以下方面:

1. 自然过程(Natural Processes)

模型当前生态系统
为这个刚从茂密森林转变为农业用地的新生态系统构建一个基本的食物网模型。
其中包含生产者(庄稼、植物)和消费者(植食性动物、昆虫、捕食者等),同时要考虑农业周期及其季节性对系统动态的影响。
注意化学药剂(如除草剂、杀虫剂)的使用对于植物健康、虫群数量、蝙蝠和鸟类种群,以及对整个生态系统稳定性的影响。

物种的重新出现(Reemergence of Species)
随着时间推移,农田周边边缘栖息地开始成熟,一些原生物种会逐渐回归。
当这些物种回归后,它们与当前农田生态系统之间的交互会如何改变整个系统?
在模型中加入两个不同的新回归物种,并分析其带来的影响。

2. 人类决策(Human Decisions)

去除除草剂(Removal of herbicide)
随着生态系统逐渐成熟,农民可能尝试减少对化学药剂的依赖。
如果除草剂停止使用,如何评估生产者和消费者层面的生态系统稳定性?
如何通过在食物网中加入蝙蝠来让生态系统重新平衡?在模型中把蝙蝠当作捕食昆虫的食虫动物以及协助植物传粉的物种,分析蝙蝠对昆虫、植物以及它们天敌的交互影响,从而评价整个生态系统的稳定性。
再找一个有助于生态平衡的物种,与蝙蝠进行对比分析,看看哪个物种的引入效益更显著或更快。

绿色农业?(Go green?)
考虑当农民开始转向有机农业时会发生什么?
可以设定多个不同情景,不同程度地采用有机耕作方式,并展示其对整个生态系统及其中各要素的影响。
考虑包括病虫害防治、农作物健康、植物传粉、物种多样性、可持续性和经济效益等方面。

3. 分享洞见(Share Your Insights)

给农民的一页信函(One-page letter to a farmer)
- 写一页信,给正考虑有机耕作的农民提供建议。
- 告诉他应该采用哪些方法,并讨论其经济利弊和可持续性。
- 帮助农民确定如何在成本和可持续性之间取得平衡,并思考如何推动相关政策来激励并支持这样的农业保护行为。

4. PDF 解决方案要求

  • 解决方案总页数不超过25页,包含:
  • 一页摘要(One-page Summary Sheet)
  • 目录(Table of Contents)
  • 完整解答(Your complete solution)
  • 一页信函(One-page letter)
  • 参考文献(References list)
  • 如果使用了AI(ChatGPT等),必须附加一份AI使用报告(不计入25页限制)。
  • 如果只有部分问题的解答,也可以提交。
  • COMAP允许适度使用AI,但若使用AI,需遵守其使用政策并附上AI使用报告。

词汇(Glossary)

转换后的森林区(Converted Forest Area):指被清理的森林以用于农业种植的区域。
食物网(Food Web):生态系统内部各生物之间的捕食与被捕食关系网络,能量与营养在其中层层传递,从生产者、消费者到分解者。
农业生态系统(Agricultural Ecosystem):一种复杂的生态系统,包含农作物、害虫、益虫以及各种相互作用。人为干预(化肥、除草剂、杀虫剂等)可能会带来生态和经济影响,而蝙蝠等物种可能提供生态服务(如授粉、虫害控制)。
农业周期(Agriculture Cycle):指从准备土壤、播种、作物生长、施肥与病虫害防治、收割、后续处理再到消费和分解的整个过程。
蝙蝠(Bats):在农田生态系统中往往扮演关键角色,具备捕食害虫、传粉和传播种子的功能,对维持生态健康和生态经济效益都有显著贡献。
边缘栖息地(Edge Habitats):在农田周边或与其他生态系统交界处形成的区域,这些地方在生物多样性恢复或维持中往往扮演缓冲带的角色。

二、整体分析

本题围绕“从森林到农田”的生态演变进行建模与分析,涉及到自然生态过程和人类农学决策两大维度。核心是“食物网模型”的动态演变,以及外部干预(化学品与生物多样性的重塑)对生态平衡的影响。

根据题意,主要关注以下要点:

森林到农田的转变过程

  1. 森林在被清理后,植被覆盖骤减,土地的养分可能流失。
  2. 初始阶段,庄稼取代了自然植物,化学农药与肥料介入,导致原有生物多样性遭到冲击。
  3. 随时间推移,一些物种会重新出现或被重新引入,使得食物网出现新的结点或连结。

食物网建模

  1. 需要先搭建一个基础的农业生态系统食物网:生产者(农作物)、初级消费者(草食或以植物为食的昆虫等)、次级或更高级消费者(捕食者如鸟类、蝙蝠、蜘蛛等),以及分解者(微生物、真菌、蚯蚓等)。
  2. 农业周期对食物网会产生季节性扰动,如春季播种、夏季生长、秋季收获,以及施用农药、化肥等。

自然过程与人类决策的耦合

  1. 自然过程包括:边缘效应、物种回归、多样性恢复、土壤演替等;
  2. 人为干预包含:化学投入(农药、除草剂、化肥)、引入益虫或益鸟/益兽(如蝙蝠)进行生物防治;是否采用有机农业方法等。

去除化学药剂后的影响

  1. 有机农业或少化学品使用会带来短期产量和病虫害风险,但也可能带来长远的可持续收益和生态平衡。
  2. 需要探讨成本收益与长期生态效益的权衡。

模型的阶段性和动态性

  1. 本题并非简单的静态平衡模型,而是一个多阶段、多变量的动态过程。可考虑使用微分方程组、差分方程、马尔可夫链、模拟仿真、或复杂网络模型来描述。
  2. 同时结合多目标规划(如产量最大化、农药使用最小化、生物多样性最大化等)来给出最优决策建议。

三、分问题详细分析与求解思路

以下逐条对应题目提出的分析重点,给出可选的数学建模框架和思路示例。

1. 新农业生态系统的食物网模型

(1) 目标
- 建立一个基础的食物网结构,包括生产者、消费者、分解者各层级。
- 反映化学干预(如杀虫剂)的对食物网节点和连边的影响。

(2) 建模思路
食物网图模型
- 将各物种作为图中的顶点(Node),捕食/被捕食关系为有向边(Edge)。
- 每个物种有其种群数量 x_i(t) ,用动力学方程(如Lotka-Volterra型)表示相互作用。
Lotka-Volterra 扩展方程
{dxidt=xi(ri+∑jaijxj−ci),… 这里r_i为出生率或生长率,a_{ij}为物种j对物种i的交互影响系数,c_{i}可表示外部干预(如农药)对第i种群的打击率。
季节性周期:可以把r_i或c_i设定为周期性函数,模拟农业周期或四季气候的影响。

(3) 注意事项
如何量化农业活动对不同物种的影响:可将农药使用视作对某些物种(害虫)负向影响较大,但也对其他物种有间接负面影响。
施肥对生产者r_i的提升作用。
收获期对生产者(农作物)的数量“清零式”或剧减。

2. 物种重新出现对生态系统的影响

(1) 回归物种的选择
题目要求至少考虑两个回归物种,可以是大型鸟类、或某些本地昆虫/小型哺乳动物等。
这些物种回归后,往往会改变捕食链或竞争关系。

(2) 建模思路
在原有食物网方程中,加入两个新的节点 和S1和S2 ,再定义它们与现有物种的交互系数 、ai,S1、ai,S2 等。
随时间推移,这两个物种的种群数量如何变化?对其他节点有何影响?可用灵敏度分析或仿真来观测整体食物网的稳定性变化。
若需要更精细,可考虑空间扩散模型(如反应扩散方程或元胞自动机),模拟它们在农田边缘缓慢进入核心地带的过程。

3. 去除化学药剂与蝙蝠引入

3.1 去除除草剂后的系统稳定性

(1) 短期 vs. 长期
- 短期可能导致杂草和害虫增加,农作物减产;
- 长期也可能让生态恢复多样性,形成更强的食物链自调节能力。

(2) 建模建议
多目标优化或博弈:将“产量损失最小化”与“生物多样性最大化”纳入目标函数,同时引入决策变量(是否使用除草剂、使用量大小)。
或者在动力学模型中,令除草剂使用量H(t)随时间变化,从大到小,观察系统在不同情景下的种群动态轨迹。

3.2 引入蝙蝠进行平衡

(1) 蝙蝠的角色
捕食害虫:减少对化学农药的依赖;
传粉:提高农作物或其他植物的繁殖效率。
粪肥贡献:蝙蝠粪便对土壤肥力可能有正面影响。

(2) 建模思路
在食物网中将蝙蝠视为一个新的重要节点,对特定昆虫有强烈负向捕食作用系数 abat,insect<0 ,也对植物有正面协助系数(传粉提高生殖成功率)。
需考虑蝙蝠的活动规律(夜行性),对农药残留的敏感度等。
比较方案:再引入另一种能带来益处的物种(如某种益鸟或天敌昆虫),两者对系统平衡与经济效益的影响可进行对比分析。

4. 绿色农业(Go Green)情景分析

(1) 多种有机种植方案的情景设计
Scenario A:部分有机,少量使用化肥、无化学农药;
Scenario B:完全有机,不使用化学肥料或农药;
Scenario C:传统化学农业作为对照组。

(2) 对生态系统的模拟
建立一个统一的动力学或仿真框架,把不同Scenario下的参数(农药使用率、化肥使用率、引入物种丰度等)进行差异设置。
对每种Scenario,分别观察:
1. 作物产量变化
2. 害虫、益虫种群变化
3. 土壤质量变化(可引入土壤营养指标或微生物多样性指标)
4. 经济效益和可持续性(长期经济回报)。

(3) 成本效益分析
成本项:有机认证、人工除草、施用有机肥的费用等;
收益项:农产品价格溢价、对环境和社会的正外部性(如生态旅游、减少医疗成本等)。
可用净现值(NPV)或投入产出比来做综合评估。

5. 给农民的一页信函

题目要求撰写一封简短信函,向有意转向有机或生态农业的农民做出建议。可包含:

经济收益权衡:短期成本或风险略高,但产品溢价与长期土壤改良带来正反馈。
可持续性论证:保持生态平衡,减少环境污染和生态损害。
推荐策略
1. 逐步减少化学品用量,先从除草剂或杀虫剂开始;
2. 种植多样化或间作套种,加强自然敌人和授粉者的生境;
3. 政府补贴或合作社模式,分担转型风险。

四、可能使用的模型、方法与创新性思考

本题强调综合运用生态学建模、动态系统分析与经济成本收益研究;在此列出若干可选思路:

动态系统建模

  1. Lotka-Volterra 扩展、差分方程、微分方程系统、或随机过程(考虑环境随机扰动)。

复杂网络模型

  1. 把生态系统视为复杂网络,分析结构稳定性(如网络的连通度、稳态分布等),或者利用网络熵、网络鲁棒性度量生态稳定性。

蒙特卡洛模拟

  1. 对不同场景(化学品使用量、有机程度、物种引入等)进行随机模拟,在一定范围内生成结果分布,做风险评估。

多目标优化

  1. 同时考虑产量、经济效益、生态稳定性、生物多样性等多个目标,使用遗传算法、粒子群算法或其他启发式算法寻找最优平衡解。

机器学习/深度学习

  1. 如果拥有大量实测或历史数据,可用时间序列预测(ARIMA、LSTM 等)来预测作物产量或虫害暴发概率;
  2. 或利用分类模型(SVM、随机森林等)来识别关键因子(如施药量、引入物种数量)对生态平衡的影响大小。

创新之处在于将传统生态动力学与经济学模型耦合,或构造分层/多阶段模型,并针对有机农业的不同实施方案做情景模拟与敏感性分析。

五、结语

本题综合了生态学、农业学、经济学和系统科学的多重要素。一个完整的解决方案应该:

  1. 给出动态食物网或其他合适的生态模型;
  2. 考虑不同的人为决策(除草剂、引入蝙蝠、转向有机农业)的过程;
  3. 经济-生态-社会三元目标进行系统性权衡;
  4. 能够输出可操作性的决策建议(如对农民的信函、政策建议等)。

在实战中,还需要结合更多实地数据,并根据气候、土壤和农业管理实际情况微调模型,使之更具可行性和科学指导意义。

示例:Markdown中插入图表(可自行绘制)

图1:农田生态系统简化食物网示意(示例)

[太阳能量]
                ↓
          [植物/农作物]    ← (施肥+灌溉)
                ↓
       [植食性昆虫/害虫]   ← (化学农药?)
      ↙           ↓
[鸟类]             [蝙蝠]
      ↘           ↑
       [其他食虫生物]
                ↓
           [更高级捕食者]
                ↓
           [分解者微生物]

表1:不同农业情景下的关键参数设置(示例)

情景化学农药施用量有机肥使用量蝙蝠数量引入主要收入主要成本
传统方案0化学品成本+土壤退化
生态方案中高中高化学品+有机肥成本
有机方案0有机认证+人工除草

可在建模计算时量化其产量、生态多样性指标以及长期收益。

六、参考文献示例

  1. Lotka, A. J. (1925). Elements of Physical Biology. Baltimore: Williams & Wilkins Co.
  2. Volterra, V. (1926). Variations and fluctuations of the number of individuals in animal species living together. Journal du Conseil, 3(1), 3–51.
  3. Freedman, H. I. (1980). Deterministic Mathematical Models in Population Ecology. Marcel Dekker.
  4. Conway, G. R. (1987). The properties of agroecosystems. Agricultural Systems, 24(2), 95-117.
  5. COMAP 官方网站
  6. MCM/ICM 比赛说明

(以上仅为举例,正式答卷中根据实际情况引用文献。)

七、写在最后

以上内容为对 2025 ICM 问题 E 的中文翻译、整体分析以及详细的建模和求解思路示例。文中使用了多个可能的数学模型与算法,包括生态动力学模型、复杂网络分析、机器学习、以及多目标优化等。具体落地时,可根据团队掌握的工具、数据可得性以及写作篇幅来取舍。希望对大家的建模思路有所启发。祝比赛顺利!

2025 ICM Problem F: 网络安全评估

以下内容包括四大部分:

1. F 题官方赛题中文翻译(含格式与图表/段落的适当重排版)

2. 整体分析

3. 逐个问题的详细分析与求解思路

4. 结合多种模型与算法的建模策略示例

为方便理解,文中会在合适位置插入一些"【译者注】"或"【说明】"等提示文字,以帮助读者更好地理解原题背景与后续分析。

1. F题官方赛题中文翻译

以下为原题英文内容的直译与适当排版(含段落、标题、参考文献等),并在括号中加入部分补充说明。

赛题标题

2025 ICM Problem F: 网络安全评估

背景 (Background)

当今,随着现代科技的迅猛发展,我们的世界正变得更加互联。这样的在线互联在提高全球生产力并使世界变得"更小"上起到了显著作用,但同时也使个人和集体在网络安全事件面前的脆弱性不断增加。 网络安全事件之所以难以应对,原因多种多样。其中之一是许多网络安全事件会跨越国界,这在调查和处理层面都造成了司法管辖权的复杂性。此外,许多机构(如投资公司)往往不愿公开披露自己遭到入侵的事实,而是选择"悄悄"支付费用,而不想让现有客户或潜在客户知道自己曾发生过安全漏洞。 为应对日益严重的网络安全风险和成本,许多国家都制定了各自的国家网络安全政策,并在其政府网站上公开。国际电信联盟(ITU)是联合国专门负责信息与通信技术(ICT)的机构,因而在制定国际标准、促进国际合作和开发用于衡量全球及各国网络安全状况的评估方法方面发挥领导作用。

需求 (Requirements)

在本题中,要求你帮助识别可用于"数据驱动"的国家网络安全政策和法律的设计与完善之中可能出现的"有效性模式"。请基于已被证明有效(或无效)的政策,从而发展一个理论,说明"是什么造就了一项强有力(strong)的国家网络安全政策",并运用数据分析来支持你的理论。 在构建并验证你的理论时,你可能需要考虑以下方面:

  1. 网络安全事件在全球范围内的分布 哪些国家是网络安全事件的"过度"目标(即为何这些国家成为网络安全事件高发地)? 在哪里网络安全事件更多会成功得手,在哪里更多会被挫败或阻止? 哪些地方会主动报告网络安全事件,哪些地方会处理这些事件? 你是否注意到了任何分布上的模式?
  2. 当你探索不同国家公布的网络安全政策,并将其与网络安全事件的分布情况进行比较时 其中有哪些可以帮助你识别某些政策或法律的部分对遏制网络安全事件(如在预防、处理或其他缓解方面)尤其有效或无效? 根据你的分析方法,政策颁布的时间点(即何时采纳该政策)可能也很重要。
  3. 国家层面的各种人口学和社会经济数据(例如互联网使用普及率、经济水平、教育水平等) 这些指标与网络安全事件分布之间是否存在相关性?是否会对你的理论形成支持或干扰?

同时,请基于你所收集或使用的数据的数量、质量、准确性,对你的分析做出说明。如果决策者想要依赖你的成果来制定或完善国家网络安全政策,那么你认为数据或方法上有哪些潜在局限或风险需要他们予以谨慎考虑?

注意: 你的工作并非要创造一个新的网络安全衡量指标(measure)。事实上,ITU 的 Global Cybersecurity Index (GCI) 等已有指标可供参考。该指数通过五大支柱(法律、技术、组织、能力建设、合作)对各国的网络安全状况进行评分。 你可以使用 GCI 或类似研究来对你的工作进行验证。 其他可参考的网络安全数据来源包括那些采用 VERIS 框架(VERISframework.org)的网站,如 VERIS 社区数据库 (VCDB)(verisframework.org/vcdb.html)。 你也可使用其它数据源,但需注意这些数据源的真实性与完整性。

成果展示 (Share Your Insights)

请利用你的研究成果撰写一份面向即将参加国际电信联盟网络安全峰会的各国领导人(非技术型政策专家)的1 页简报(memo)。该简报应采用非技术性语言,概述你的工作,包括研究目标和背景、你的理论,以及对国家政策制定者最具参考价值的重点发现。

术语表 (Glossary)

网络安全事件(Cybersecurity Incident):指一个(或系列)不受欢迎或意外的计算机安全事件,这些事件高度可能会破坏业务运营并威胁网络安全。

网络安全(Cybersecurity):指一系列可用于保护网络环境以及各类组织与个人资产的工具、政策、安全概念、安全防护措施、指南、风险管理方法、行动、培训、最佳实践、保证及技术总和。

2. 整体分析

本题要求我们:
1. 基于已有或可获取的数据(如 GCI、VERIS 数据等)来探究网络安全事件的全球分布现状,并与各国已实施的网络安全政策或法律进行对照。
2. 通过数据驱动的方法,归纳出“强”网络安全政策的关键属性,或者说找出能够有效预防、侦测、起诉网络安全事件的策略、法律或措施。
3. 将研究发现以政策简报形式呈现给非技术背景的决策者,使其能够据此改进本国的网络安全政策或法律。
4. 对于使用数据的局限性、缺陷,也要有清晰的说明,并提出在政策制定中可能需要考虑的客观风险。

从赛题本身来看,题目具有以下特点:
跨学科性:不仅需要数学建模与数据分析,也涉及法律、公共政策、国际关系、社会学、经济学等领域。
多层次数据融合:需要收集并综合利用与网络安全事件相关的公开数据库(如 VCDB 的事件记录),加上各国宏观社会经济指标(如 GDP、互联网渗透率、教育水平、人均收入等),以及已有的网络安全指数(GCI 等)或各国公开的政策文件内容。
定性与定量相结合:一方面需要从法律条文或政策框架中提炼出定性因素(如是否强制漏洞披露、是否对攻击行为有严格刑事处罚、是否加强国际合作等),另一方面也需要用统计、聚类、回归或其他数理模型来衡量“政策是否带来网络安全事件率的变化”“政策施行后对网络安全事件数量的影响”等。

3. 逐个问题的详细分析与求解思路

题目中核心提示的几个要点,可归纳为若干主要问题:

3.1 网络安全事件的全球分布与模式

题目指引
哪些国家是网络安全事件的重点目标?
哪里更易成功、哪里更易挫败?
哪里报告率或起诉率高,哪里低?
有无明显的地理、经济、政策等模式?

思路
数据收集与处理
从公开数据库(如 VERIS Community Database)收集过去若干年的网络安全事件记录。
提取事件中涉及的国家(攻击来源国、受害国)、事件类型、损失规模、是否支付赎金、是否起诉或公开等信息。
若数据缺失,可以做适当的插补或合理假设,也可标记不确定度。

可考虑的模型或分析方法
统计分布与可视化:绘制全球热力图(攻击或受害密度分布),对事件数、攻击成功率、报告率等进行可视化分析。
聚类分析(K-means、DBSCAN、谱聚类等):尝试根据网络安全事件指标(如事件频率、损失金额)将国家分为若干类,以识别高风险区域或低风险区域。
相关分析与回归:利用社会经济数据(如互联网普及率、GDP、人均收入、教育水平、GCI 等),探讨这些指标与网络安全事件分布的统计相关性。也可进一步使用多元回归、Logistic 回归乃至更复杂的机器学习回归模型来做归因分析。

得出初步结论
鉴别出“高攻击率”或“高受害率”的国家。
指出在何种经济、社会、政策环境下,某些网络安全事件更易发生或更易被阻止/举报。

3.2 有效政策或法律要素的提取

题目指引
探索各国发布的政策文件,将其与网络安全事件分布相比较。
哪些政策的具体条款或法律段落对于预防或减少安全事件有效?哪些措施可能效果有限?
需要考虑政策实施时间、持续时长等。

思路

  • 政策文本挖掘(若时间允许且数据丰富)
    利用自然语言处理(NLP)技术(如文本分类、关键词抽取、情感分析等)从公开的国家政策文件中提取关键要素(如强制性披露、国际合作条款、技术标准要求、惩罚力度等)。
    为每个政策要素打分或做标签,如“是否有明确法律惩处条款”“是否有官方应急响应团队”等。
  • 政策—事件匹配分析
    将国家在某年颁布或升级网络安全法之前与之后的网络安全事件情况进行对比(例如前后若干年内的攻击事件数、成功率或报告率变化)。
    与其他国家同期状况作对照控制,以排除单纯的全球趋势或其他干扰因素。
    差异中之差异(Difference-in-Differences, DID) 方法:在政策评估时常用,可用于衡量某项政策施行对目标指标的“净影响”。
  • 效果衡量
    定义若干衡量指标(如攻击减少率、报告率提升、经济损失降低等),尝试构建回归模型或多目标评价模型,分析这些政策要素的贡献度。
    机器学习/统计方法:可考虑随机森林或 XGBoost 等模型来衡量哪些政策要素最能解释网络安全事件减少或报告率提升等目标变量。
    若要更精细的分析,可结合因子分析模糊评价层次分析法(AHP) 等,以综合评估各政策维度的重要性。

3.3 国家人口学和社会经济因素的影响

题目指引
互联网普及率、财富水平、教育水平等是否与网络安全事件分布和政策效果存在显著相关?
对这些因素的解释:如何在制定政策时考虑它们?

思路
基础相关分析
将社会经济数据与网络安全事件指标或政策效果指标进行皮尔森相关、斯皮尔曼秩相关或其他统计检验,初步筛选显著相关因子。
如有必要,可分地区(发达国家 vs. 发展中国家)或分时段(5 年一段)观察。

多元回归/机器学习模型
将多个国家维度(GDP、教育水平、互联网渗透率、ICT 行业规模等)与安全事件数据或 GCI 等指标一起纳入模型,探讨解释度和影响大小。
注意共线性(collinearity)问题,通过主成分分析(PCA) 或因子分析(Factor Analysis)进行维度降维或变量选择。

政策建议
若发现教育水平与网络安全事件成正/负相关,且影响很大,可提出加强全民网络安全意识教育的策略建议。
若发现法律执行力度、跨国合作对于抑制某些类型的攻击至关重要,可在简报中强调国际层面合作立法。

3.4 数据与方法的局限性

题目指引
对所收集的数据数量、质量及可靠性的反思;
对研究方法可能带来的偏差或不确定性进行说明;
给政策制定者的警示或注意事项。

思路
数据可得性:网络安全事件数据往往不完全,尤其是很多企业或机构不愿公开被攻击的事实,存在大量漏报。
时效性:政策实施后的影响需要时间去体现,短期内可能难以观察到效果;国家在报告安全事件时滞、法律变化的更新时滞也会带来时间序列对齐问题。
国际比较的可比性:不同国家的统计口径和法律定义不尽相同,容易导致跨国数据存在不可比因素。
多重因果与干扰:经济发展、社会结构或国际形势也会影响网络攻击态势,不是单纯由某项政策决定。

4. 结合多种模型与算法的建模策略示例

为了回答上述问题并形成完整的解题思路,我们可在不同阶段选用不同的数学模型或算法。以下给出一个可行的多模型、多阶段集成示例,具有一定的创新性与复杂性,可供参考。

  1. 数据预处理与可视化阶段
    描述性统计 + 可视化:对收集的网络安全事件事件进行频数统计、柱状图/热力图展示;对国家层面的人口学和社会经济指标进行分布可视化;对政策要素文本做关键词云分析等。
    工具:Python(pandas、matplotlib、seaborn、plotly),R(ggplot2)等。
  2. 网络安全事件风险分区与聚类(图论/聚类方法)
    将各国视作图节点,国与国间可根据相似度(如政策条款相似度、网络安全事件数量相似度等)建立边。对该图进行社区检测(如基于谱聚类或模块度优化)。
    或者对各国多指标(攻击数量、成功率、报告率等)进行聚类(K-means、DBSCAN、Gaussian Mixture 等),从而分类别地对比政策差异,找出某些集群内的共同特征。
  3. 回归与因果分析(Logistic 回归 / 差分中之差分 / 面板数据模型)
    若数据允许(多年度、多国家),可采用面板数据模型(如固定效应/随机效应模型)或“差分中之差分”模型来量化某些政策实施对于网络安全事件指标的平均影响。
    Logistic 回归:可把“网络安全事件事件成功或未成功”当作二元变量,输入政策或社会经济因子来预测成功概率。
    多目标评价:也可对“减少的攻击损失金额”“提高的起诉率”“公众满意度”等多种目标综合加权评价,以判断政策优劣。
  4. 机器学习/深度学习预测
    如果需要预测未来某国网络安全事件趋势,可使用时间序列方法(ARIMA、LSTM、Prophet 等)或基于回归的机器学习模型
    在预测结果基础上,再结合政策模拟:若引入某类新法律,对预测趋势会有何影响?可做情景模拟(Scenario Analysis)。
  5. 多元评价与政策方案优化(规划模型/博弈模型)
    对决策者而言,往往需要在多个目标间权衡:例如加强惩罚 vs. 保护个人隐私,或防范成本 vs. 用户体验等。
    可以利用多目标规划模型(如线性/整数规划或进化算法)来生成不同政策组合,或用简单的层次分析法(AHP) + 熵权法对政策组合做优先级排序。
    若考虑国际合作与对抗,也可尝试博弈论模型(如非对称信息博弈)讨论跨国执法合作的动力与阻力。
  6. 形成最终结论与1页政策简报
    将核心发现提炼为简明易懂的建议,如:
    1. 哪些政策条款(如强制漏洞披露、加强国际协查)对于降低网络攻击成功率最有效;
    2. 哪些社会经济指标(如高互联网普及率)可能会带来更高的网络风险,需要更完善的防护;
    3. 面对数据不完全与跨境管辖困难的挑战,需要哪些全球或区域性协作机制;
    4. 在使用本研究结果时,决策者需要注意的局限或不确定性。

结语

通过以上思路,结合对各类数学模型、机器学习算法和深度学习技术的灵活应用,我们能够较为系统地回答本题所需的核心问题:“哪些国家在网络安全事件中处于何种地位,哪些政策有效,哪些无效,如何在不同国情下制定或完善网络安全法律与政策。” 最后,我们需撰写一页面向国家领导人的非技术性简报,总结研究目标、方法和关键发现,并提出切实可行的政策建议。

若时间和资源充分,还可以进一步拓展对国际合作机制的建模与评估,对立法效率及司法执行力等因素做更深入研究。
由于数据难以完全准确,需在论文中明确局限性与不确定性。
整个研究对跨学科能力、数据分析与定量/定性结合能力都有较高要求,符合 ICM 注重的“跨学科建模”理念。

(附)撰写“1页简报”的要点

题目要求最终呈现给政策制定者的简报仅 1 页,应避免技术细节,突出要点:
研究背景与目的:为什么要研究网络安全政策有效性?
主要发现:哪些政策措施最有利于减少网络攻击成功率?是否有明确数据支持?
重点建议:简洁明了,最好有 3~5 条关键建议,供领导人快速浏览。
告诫或局限性:提醒数据可能存在不完全性、需要持续监测等。

版权声明
以上翻译与分析中所引用之原题文字、组织结构、参考链接等,均归 COMAP, Inc. 所有;中文译文仅作学术探讨与竞赛交流之用。

由于赛程时间紧急,后续详细完整内容可能无法在CSDN及时同步更新,欢迎从文末小卡片处加群获取完整内容~

2025年美赛于北京时间1月24号早上6点开始。

比赛开始之后,鹿鹿这边会在第一时间于 Q群579606602/同名公众号/文末卡片 更新对美赛各个题目的分析和点拨,敬请期待~

在比赛正式开始之前,我们将首先介绍今年美赛的基本信息、时间安排、组队分工和一些美赛的常用算法和可视化。

美赛基本信息:

美国大学生数学建模大赛(MCM/ICM)是一项国际性建模竞赛,由美国自然科学基金协会和美国数学与数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家国际机构协办。

竞赛形式:

团队解决一个问题(MCM: A, MCM: B, MCM: C, ICM D, ICM E或ICM: F),并为他们选择的问题提交一个解决方案,方案论文必须在25页以内,包括摘要表、解决方案、参考列表、目录、注释、附录、代码和任何特定问题的要求。竞赛时间为四天,参赛队伍成员必须在同一所学校就读全日制或非全日制,每个团队最多可以由三名学生组成,团队最少一人,最多三人,每个学生只能参加一个团队。方案需要在截止提交日期前发送到指定邮箱。

比赛时间:

  • 竞赛时间申请截止至北京时间2024年2月2日凌晨4:00,
  • 比赛日期为北京时间2024年2月2日-6日,
  • 比赛开始于北京时间2024年2月2日早上6:00,结束于北京时间2024年2月6日早上9:00,提交截止日期为北京时间2024年2月6日早上10:00。

获奖率如下:

MCM:

  • 常规奖项特等奖(Outstanding Winner:<1%),
  • 提名奖(Finalist:2%),
  • 一等奖(Meritorious:7%),
  • 二等奖(Honorable Mention:24%),
  • 参与奖(Successful Participant:64%);

ICM:

  • 常规奖项特等奖(Outstanding Winner:<1%),
  • 提名奖(Finalist:1%),
  • 一等奖(Meritorious:7%),
  • 二等奖(Honorable Mention:18%),
  • 参与奖(Successful Participant:69%)

去年美赛相关内容参考(详见个人知乎专栏)

A题采用了Lotka-Volterra方程机理建模+系统交互+遗传算法优化模型的建模;

B题采用了动力学建模+卡尔曼滤波推演的建模方法;

C题采用了机理建模+蒙特卡洛对随机过程模拟的建模方法;

D题采用了动态系统模型+LSTM模型的建模方法。

E题采用了韧性评估+承保决策+策略优化模型的建模方法;

F题采用了系统动力学模型+时间序列分析的建模方法。

B精品论文可视化

美赛人员分工

数学建模美赛要求一个由三人组成的团队在四天内完成模型构建、编程实现和论文撰写的挑战。对于初次参加或经验较少的团队而言,时间紧张且任务繁重。那么,如何应对呢?

当然,首要任务是认真学习优秀的论文,加强算法应用和编程技能。此外,根据团队实际情况找到合适的分工模式,也是提高效率的有效方法。

以下是四种分工方式的详细介绍:

分工方式一:建模+编程+论文写作

  • 适用团队:两位擅长建模、一位建模基础较弱的成员。
  • 团队组成:小A(模型建立)、小B(编程实现)、小C(论文排版及数据收集)。
  • 评价:这是一种经典且广泛应用的分工,适用性强。但也可能因沟通不畅导致效率降低。负责论文的成员在模型建立初期可协助其他工作。

分工方式二:每人独立负责一个模型的建立、编程和论文写作

  • 适用团队:每个成员都具备一定的建模基础。
  • 团队组成:小A、小B、小C均独立完成模型。
  • 评价:适用于确定算法选择较快的题型。每个成员应掌握经典及几种高级算法。

分工方式三:两人实现模型建立,一人完成论文写作

  • 适用团队:同分工方式二。
  • 团队组成:同分工方式二。
  • 评价:要求成员都有良好的建模基础。可根据参赛规则和题目特点选择此方式或方式二。

分工方式四:一人负责建模和编程,两人负责数据处理与论文写作

  • 适用团队:一名经验丰富的成员和两名建模基础较弱的成员。
  • 团队组成:小A(建模与编程)、小B和小C(数据与论文)。
  • 评价:适用于争取获奖的团队,一人主导模型工作,其他成员协助。

总结:

  • 根据团队成员的建模能力,可灵活选择以上分工方式。
  • 即便团队成员均不擅长建模,也不应放弃,积累经验是关键。
  • 分工方式固然重要,但最重要的是巩固建模知识和掌握算法。

比赛时间安排:

比赛前夜:

  • 晚上:确保充足睡眠以备赛事。

第一天:

  • 早晨(6:00-7:20):
  • 下载并初步翻译赛题(每人负责2题,结合机翻及个人翻译)。
  • 确认最佳翻译版本。
  • 个人复审6题,记录关键词、模型等。
  • 中午(12:00):小组讨论,选择两个潜在赛题。
  • 下午(13:30-17:00):
  • 确定最终选题。
  • 开始网络资料收集。
  • 晚上(18:00-21:00):
  • 确定基础模型。
  • 开始编程与写作,力求初步结果。

第二天:

  • 早晨(8:00):根据初始结果优化模型。
  • 下午(17:00):完成论文主体,包括数据和图表。
  • 夜间(22:00):完成主要写作任务,撰写模型优缺点及结论。

第三天:

  • 早晨(8:00):改进模型缺点。
  • 中午(12:00):在论文初稿基础上增加模型优化内容。
  • 夜间(22:00):完成论文绝大部分,尝试撰写摘要。
  • 深夜(23:00):准备论文附录。

第四天:

  • 早晨(8:00):进行模型灵敏度测试和优化。
  • 中午(12:00):完成模型优化,预备长夜。
  • 下午(15:00):开始论文翻译,避免使用模型比赛专业翻译。
  • 晚上(20:00):团队论文复审,完善摘要。

最后一天:

  • 凌晨(5:00):完成论文初稿三次以上修改。
  • 早晨(7:00):提前上传最终稿,避免网络问题。
  • 之后:提交成功后立即休息,以养精蓄锐。

合理安排作息,保持良好的身体状态是成功的关键。避免过度熬夜,以免影响健康。

美赛中常用算法

1. 蒙特卡罗算法

算法介绍:蒙特卡罗算法是一种基于概率和随机性的方法,通过生成大量随机样本来模拟复杂系统的行为或计算数值解。它不依赖于严格的解析解,而是通过随机采样来估计问题的结果。

算法举例:例如,在估计圆周率π的值时,可以在一个正方形内随机生成点,然后计算落在内切圆内的点的比例,利用这个比例估计π的值。

应用场景**:蒙特卡罗算法广泛应用于金融风险分析、物理学中的粒子行为模拟、复杂系统的概率分析等领域。

2. 数据处理算法(数据拟合、参数估计、插值等)

算法介绍:这类算法用于从原始数据中提取有用信息,包括数据拟合、参数估计和插值等。这些方法帮助我们理解数据的结构和潜在规律。

算法举例

线性回归 y=a+bx ,用于拟合数据到一条直线,

多项式回归 y=a0+a1x+a2x2+⋯ ,用于拟合数据到一个多项式曲线。

应用场景:数据处理算法在市场研究、趋势预测、统计分析等领域中极为重要。

3. 规划类问题算法(线性规划、整数规划等)

算法介绍:这些算法用于求解最优化问题,其中包括线性规划、整数规划、非线性规划等。

算法公式

例如,线性规划的标准形式为

maximize cTx subject to Ax≤b, x≥0 。

应用场景:这些方法广泛应用于资源分配、生产计划、物流管理等领域。

4. 图论算法

算法介绍

图论算法用于解决图相关的问题,如最短路径、网络流、匹配问题等。

算法公式举例:Dijkstra算法用于计算最短路径,Prim算法和Kruskal算法用于找到最小生成树。

应用场景:图论算法应用于社交网络分析、交通规划、计算机网络设计等领域。

5. 计算机算法(动态规划、回溯搜索等)

算法介绍:这类算法包括动态规划、回溯搜索、分治算法等,主要用于解决复杂的计算问题。

算法公式举例:动态规划中的Fibonacci数列 F(n)=F(n−1)+F(n−2) 。

应用场景:这些算法在计算机视觉、路径规划、资源优化等领域中有广泛应用。

6. 最优化理论算法

算法介绍:这些算法旨在求解复杂的最优化问题,包括贪婪算法、模拟退火、遗传算法等。 算法公式:例如,模拟退火算法利用温度参数来控制解空间的搜索范围。

应用场景**:在机器学习、旅行商问题、网络优化等领域中十分有效。

7. 网格算法和穷举法

算法介绍:通过完全枚举所有可能的情况来找到问题的解决方案。

应用场景:这类算法通常用于理论研究和基础教学,或者在问题规模较小时直接求解。

8. 连续离散化方法

算法介绍:将连续数据转换为离散形式以便于计算机处理,如通过差分代替微分。

应用场景:在工程计算、数值模拟、物理问题解决等领域中有广泛应用。

9. 数值分析算法

算法介绍:这些算法用于解决数值问题,如方程组求解、矩阵运算、数值积分等。

算法举例:高斯消元法用于解线性方程组,在科学研究和工程计算中十分重要。

10. 图像处理算法

算法介绍:这类算法用于处理和分析图像数据,如使用卷积进行图像滤波。

应用场景:广泛应用于数字图像处理、医学成像、机器视觉等领域。

每一种算法都有其独特的应用场景和理论基础,需要根据具体问题选择合适的算法进行解决。在数学建模竞赛中,正确选择和应用这些算法是成功的关键。

数学建模中的可视化

数学建模中的可视化分析是一个重要的环节,它帮助研究者和观众更好地理解数据和模型的结果。以下是一些常见的可视化分析方法和算法,以及相应的Python代码示例:

1. 折线图(Line Plot)

用途:展示数据随时间或有序类别变化的趋势。

Python 示例

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

plt.plot(x, y)
plt.title('Line Plot Example')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.show()
```

2. 柱状图(Bar Chart)

用途:比较不同类别间的数值大小。 Python 示例

categories = ['Category A', 'Category B', 'Category C']
values = [10, 20, 15]

plt.bar(categories, values)
plt.title('Bar Chart Example')
plt.xlabel('Categories')
plt.ylabel('Values')
plt.show()

3. 散点图(Scatter Plot)

用途:展示两个变量之间的关系。 Python 示例

x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11, 12, 9, 6]
y = [99, 86, 87, 88, 100, 86, 103, 87, 94, 78, 77, 85, 86]

plt.scatter(x, y)
plt.title('Scatter Plot Example')
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.show()

4. 直方图(Histogram)

用途:展示数据的分布情况。

Python 示例

data = np.random.normal(0, 1, 1000)

plt.hist(data, bins=30)
plt.title('Histogram Example')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()

5. 饼图(Pie Chart)

用途:显示各部分占整体的比例。

Python 示例

sizes = [15, 30, 45, 10]
labels = ['Frogs', 'Hogs', 'Dogs', 'Logs']

plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('Pie Chart Example')
plt.show()

6. 热力图(Heatmap)

用途:展示变量间的相关程度或数据的密度。

Python 示例

data = np.random.rand(10, 10)

sns.heatmap(data, annot=True)
plt.title('Heatmap Example')
plt.show()

7. 箱形图(Box Plot)

用于展示数据的分布和异常值。

Python 示例

data = np.random.rand(10, 5)

plt.boxplot(data)
plt.title('Box Plot Example')
plt.show()

8. 三维散点图(3D Scatter Plot)

用于在三维空间中展示数据点。

Python 示例

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.random.standard_normal(100)
y = np.random.standard_normal(100)
z = np.random.standard

9.三维曲面图

这种图表非常适合于展示有关两个自变量和一个因变量间复杂关系的数据。

Python 示例: 这是一个三维曲面图的示例,展示了一个由函数 z=sin⁡(x2+y2) 生成的曲面。使用了matplotlib的plot_surface方法来绘制曲面,并通过viridis色彩映射来增强视觉效果。以下是生成这个图形的Python代码:

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np

# 创建一个图形对象
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

# 生成数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
x, y = np.meshgrid(x, y)
z = np.sin(np.sqrt(x**2 + y**2))

# 绘制三维曲面图
surf = ax.plot_surface(x, y, z, cmap=cm.viridis)

# 添加颜色条
fig.colorbar(surf)

# 设置标题
ax.set_title('3D Surface Plot')

# 显示图形
plt.show()

三维曲面的二维投影图

介绍:将三维曲面沿一个或多个轴投影到二维平面上,以查看曲面的不同视角。

示例代码:

fig = plt.figure()     
ax = fig.add_subplot(111)     
ax.contourf(x, y, z, cmap=cm.viridis)     
plt.show()

部分依赖分析图(Partial Dependence Plot)

部分依赖分析图(Partial Dependence Plot,简称PDP)是一种用于解释复杂机器学习模型的可视化工具。PDP可以帮助我们理解一个或两个特征对模型预测结果的影响,而忽略掉其他特征的影响。这种分析对于提高模型的透明度和可解释性非常有价值。

主要特点和用途

1. 展示特征影响:PDP显示了在保持模型中所有其他特征固定的情况下,一个特征(或两个特征的交互)对预测结果的平均影响。

2. 可解释性:对于复杂的模型(如随机森林、梯度提升机等),PDP帮助解释单个特征如何影响模型的预测,提高了模型的可解释性。

3. 非线性关系和交互效应:PDP特别适合揭示特征与预测目标之间的非线性关系,以及不同特征之间的交互效应。

工作原理

PDP通过对数据集中的特定特征进行多次采样,并保持其他特征不变,然后计算模型对这些样本的预测平均值来生成。

PDP是机器学习领域中一个非常有用的工具,尤其是在需要解释复杂模型的决策过程时。通过使用PDP,数据科学家和分析师可以更好地理解和信任他们的模型预测。图像: 部分依赖分析图的生成需要一个训练好的模型和特定的数据集,这里使用一个简单的合成数据集和一个基本的分类模型来演示。

这是一个部分依赖分析图的示例,它展示了在一个简单的合成数据集上训练的梯度提升分类器中,特征0、特征1以及它们的组合(特征0和1)对模型预测的影响。这种类型的图表非常有用于解释机器学习模型的行为,特别是在识别哪些特征对模型预测最有影响时。

生成这个图表的Python代码如下:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.inspection import plot_partial_dependence
from sklearn.datasets import make_classification

# 创建合成数据集
X, y = make_classification(n_samples=100, n_features=5, random_state=42)

# 训练梯度提升分类器
clf = GradientBoostingClassifier(n_estimators=50, random_state=42).fit(X, y)

# 绘制部分依赖图
features = [0, 1, (0, 1)]
plot_partial_dependence(clf, X, features, grid_resolution=20)

# 显示图形
plt.suptitle('Partial Dependence Plots')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值