昇思25天学习打卡营第7天|保存与加载

        在这一节课程的学习中,我学习了如何保存和加载模型,以便在训练之后进行模型微调、模型推理和部署等任务。

        首先,我学会了如何保存和加载模型权重。要保存模型权重,使用save_checkpoint接口,并传入要保存的网络和保存路径。这将保存网络的参数权重,以便后续加载使用。要加载模型权重,我们需要创建相同模型结构的实例,并使用load_checkpointload_param_into_net方法加载参数。在加载过程中,我们可以获取未被成功加载的参数列表,以确保加载的准确性。

        除了模型权重,MindSpore还提供了保存和加载MindIR(Intermediate Representation)的功能。MindIR是一种统一的中间表示,用于训练和推理。我们可以使用export接口将模型保存为MindIR,这同时保存了模型的权重和结构信息。在保存MindIR时,需要定义输入Tensor来获取输入的形状信息。已有的MindIR模型可以通过load接口加载,并传入nn.GraphCell来进行推理。需要注意的是,nn.GraphCell仅支持图模式的推理。

        通过保存和加载模型,我们可以方便地复用已经训练好的模型,进行模型微调、模型推理和部署等任务,从而提高模型的效率和应用的灵活性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值