昇思25天学习打卡营第24天|RNN实现情感分类

在这里插入图片描述

RNN实现情感分类学习总结

概述

情感分类是自然语言处理领域的重要任务,主要用于识别文本中表达的情绪。本文使用MindSpore框架实现基于RNN的情感分类模型,示例包括:

  • 输入: “This film is terrible” -> 标签: Negative
  • 输入: “This film is great” -> 标签: Positive

数据准备

本节使用经典的IMDB影评数据集,该数据集包含正面和负面评论。数据示例包括:

ReviewLabel
“Quitting” may be as much about exiting…Negative
This movie is amazing because…Positive

数据下载模块

创建数据下载模块,使用requests库进行下载,并通过tqdm库可视化下载进度。下载后,使用tarfile库解压数据集,提取出训练和测试数据。

加载IMDB数据集

数据集解压后,分别读取训练和测试数据,并使用mindspore.datasetGeneratordataset接口加载。这一过程包括构建数据和标签的迭代对象。

加载预训练词向量

使用GloVe词向量进行单词编码,构建词表和对应的词向量矩阵。通过nn.Embedding层加载这些词向量,使模型能够对输入文本进行有效的语义表示。

数据集预处理

对加载的IMDB数据集进行预处理,包括:

  • 将Token转换为索引ID。
  • 统一文本序列长度,使用<pad>进行填充。

使用mindspore.dataset提供的接口实现这些操作,并将处理好的数据集分为训练和验证集。

模型构建

设计用于情感分类的RNN模型结构:

  • Embedding层:使用加载的GloVe词向量。
  • RNN层:采用LSTM作为特征提取器,以避免梯度消失问题。
  • Dense层:将提取的特征映射到二分类输出。

损失函数与优化器

选择nn.BCEWithLogitsLoss作为损失函数,针对二分类问题进行优化。

训练逻辑

训练过程中包括以下步骤:

  1. 读取Batch数据。
  2. 进行正向传播和反向传播,更新模型参数。
  3. 记录损失值。

使用tqdm库可视化训练进度。

评估指标与逻辑

对模型进行评估,通过预测结果与真实标签对比,计算准确率。实现的评估逻辑包括:

  1. 读取Batch数据。
  2. 正向计算预测结果。
  3. 计算准确率。

同样使用tqdm进行可视化。

模型训练与保存

设置训练轮数为5轮,并保存最佳模型。训练过程中维护best_valid_loss以保存损失值最低的模型。

模型加载与测试

训练完成后,通过MindSpore的Checkpoint接口加载最佳模型进行测试。这一过程确保模型能够有效地进行情感分类。

自定义输入测试

设计预测函数,实现输入评价的情感分类。步骤包括:

  1. 分词处理输入句子。
  2. 查找词表获取索引ID。
  3. 转换为Tensor,输入模型进行预测。
  4. 输出预测结果。

通过以上步骤,RNN模型实现了准确的情感分类,展示了自然语言处理中的应用潜力。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用RNN实现情感分类的代码示例: ``` import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, LSTM, SpatialDropout1D from sklearn.model_selection import train_test_split # 读取数据集 data = pd.read_csv('sentiment_analysis.csv') data = data[['text', 'sentiment']] data = data[data.sentiment != "Neutral"] data['text'] = data['text'].apply(lambda x: x.lower()) data['text'] = data['text'].apply((lambda x: re.sub('[^a-zA-z0-9\s]', '', x))) # 获取文本和标签 texts = data['text'].values labels = pd.get_dummies(data['sentiment']).values # 对文本进行分词,并将每个词转换为数字 tokenizer = Tokenizer(num_words=2000, split=' ') tokenizer.fit_on_texts(texts) X = tokenizer.texts_to_sequences(texts) X = pad_sequences(X) # 划分数据集 X_train, X_test, Y_train, Y_test = train_test_split(X, labels, test_size=0.33, random_state=42) # 构建RNN模型 embed_dim = 128 lstm_out = 196 model = Sequential() model.add(Embedding(2000, embed_dim, input_length=X.shape[1])) model.add(SpatialDropout1D(0.4)) model.add(LSTM(lstm_out, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 batch_size = 32 model.fit(X_train, Y_train, epochs=10, batch_size=batch_size, verbose=2) # 评估模型 score, acc = model.evaluate(X_test, Y_test, verbose=2, batch_size=batch_size) print("score: %.2f" % (score)) print("acc: %.2f" % (acc)) ``` 在这个示例中,我们首先读取数据集并对文本进行预处理。然后,我们使用Tokenizer将文本转换为数字,并使用pad_sequences将每个序列填充到相同的长度。然后,我们将数据集划分为训练集和测试集。 接下来,我们构建RNN模型。我们使用Embedding层将每个数字转换为向量,然后添加SpatialDropout1D层和LSTM层。最后,我们添加一个Dense层,并使用softmax激活函数对输出进行分类。我们使用categorical_crossentropy作为损失函数,使用adam优化器进行训练,并使用accuracy作为评估指标。 最后,我们训练模型并评估其性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值