学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)
模型训练
模型训练一般分为四个步骤:
- 构建数据集。
- 定义神经网络模型。
- 定义超参、损失函数及优化器。
- 输入数据集进行训练与评估。
现在我们有了数据集和模型后,可以进行模型的训练与评估。
构建数据集
首先从数据集 Dataset加载代码,构建数据集。
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
def datapipe(path, batch_size):
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = MnistDataset(path)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)
用MnistDataset
和transforms
模块的API加载和预处理数据,比如标准化、归一化和数据类型转换。通过定义数据管道,将原始数据转换为模型训练所需的格式,最后数据集打包为大小为64的batch。
相关内容:昇思25天学习打卡营第1天|快速入门昇思25天学习打卡营第3天|数据集 Dataset|数据变换 Transforms
定义神经网络模型
从网络构建中加载代码,构建一个神经网络模型。
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
通过继承nn.Cell
类构建自定义的神经网络模型,construct
方法中定义模型的前向传播过程。面向对象的编程。
相关内容:昇思25天学习打卡营第4天|网络构建|函数式自动微分
定义超参、损失函数和优化器
超参
超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:
公式中,是批量大小(batch size),是学习率(learning rate)。另外,为训练轮次中的权重参数,为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:
-
训练轮次(epoch):训练时遍历数据集的次数。
-
批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。
-
学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。
epochs = 3
batch_size = 64
learning_rate = 1e-2
超参数包括迭代轮数(epochs)、批量大小(batch size)和学习率(learning rate)等。设置超参数影响模型的收敛速度、最终性能。例如,适当的学习率可以保证模型能快速收敛,也可能避免过拟合或欠拟合。
损失函数
损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。
常见的损失函数包括用于回归任务的nn.MSELoss
(均方误差)和用于分类的nn.NLLLoss
(负对数似然)等。 nn.CrossEntropyLoss
结合了nn.LogSoftmax
和nn.NLLLoss
,可以对logits 进行归一化并计算预测误差。
loss_fn = nn.CrossEntropyLoss()
损失函数衡量模型预测值与真实值的差距,模型训练的目标即为降低损失函数求得的误差。在分类任务中,交叉熵损失是一个常见的选择。
优化器
模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。
我们通过model.trainable_params()
方法获得模型的可训练参数,并传入学习率超参来初始化优化器。
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:
grads = grad_fn(inputs)
optimizer(grads)
优化器负责根据损失函数计算出的梯度更新模型参数。优化器有SGD、Adam、RMSprop等。
训练与评估
设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:
- 训练:迭代训练数据集,并尝试收敛到最佳参数。
- 验证/测试:迭代测试数据集,以检查模型性能是否提升。
接下来我们定义用于训练的train_loop
函数和用于测试的test_loop
函数。
使用函数式自动微分,需先定义正向函数forward_fn
,使用value_and_grad获得微分函数grad_fn
。然后,我们将微分函数和优化器的执行封装为train_step
函数,接下来循环迭代数据集进行训练即可。
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train_loop(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
test_loop
函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们将实例化的损失函数和优化器传入train_loop
和test_loop
中。训练3轮并输出loss和Accuracy,查看性能变化。
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(model, train_dataset)
test_loop(model, test_dataset, loss_fn)
print("Done!")
模型训练的整个流程,从数据加载到模型前向传播,再到计算损失、反向传播和参数更新。训练过程中关注模型的性能变化,如准确率、损失值等,调整超参数或模型结构。使用验证集来评估模型的泛化能力。过拟合和欠拟合是需要注意的问题。正则化、dropout等技术可以帮助缓解过拟合问题。
模型训练一般分为四个步骤:构建数据集、定义神经网络模型、定义超参、损失函数及优化器、输入数据集进行训练与评估。
构建数据集时,需要对数据进行预处理,如归一化、类型转换等操作。
定义神经网络模型时,可以使用MindSpore提供的nn模块来构建网络结构。
定义超参、损失函数和优化器时,需要根据实际任务选择合适的参数和算法。
在训练过程中,可以通过调整超参数来优化模型性能。
保存与加载
上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import Tensor
def network():
model = nn.SequentialCell(
nn.Flatten(),
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10))
return model
保存和加载模型权重
保存模型使用save_checkpoint
接口,传入网络和指定的保存路径:
model = network()
mindspore.save_checkpoint(model, "model.ckpt")
要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpoint
和load_param_into_net
方法加载参数。
model = network()
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
param_not_load
是未被加载的参数列表,为空时代表所有参数均加载成功。
使用mindspore.save_checkpoint
方法可以将训练好的模型参数保存为.ckpt
文件,这种方法保存的是模型的权重参数,不包括模型的结构信息,因此在加载时需要确保模型结构与保存时完全一致。
通过mindspore.load_checkpoint
读取.ckpt
文件中的参数字典,再利用mindspore.load_param_into_net
将参数加载到新的模型实例中。要求新模型的结构必须与之前保存模型的结构完全匹配。
保存和加载MindIR
除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export
接口直接将模型保存为MindIR。
model = network()
inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。
已有的MindIR模型可以方便地通过load
接口加载,传入nn.GraphCell
即可进行推理。
nn.GraphCell
仅支持图模式。
mindspore.set_context(mode=mindspore.GRAPH_MODE)
graph = mindspore.load("model.mindir")
model = nn.GraphCell(graph)
outputs = model(inputs)
print(outputs.shape)
MindIR是MindSpore特有的中间表示格式,便于模型在不同设备间的迁移和部署。MindIR模型不仅包含了模型结构,还包含了权重参数,因此比仅保存权重更为全面。
使用mindspore.export
方法可以将模型导出为MindIR格式。导出时需要提供一个示例输入,以确定模型的输入形状和类型。
加载MindIR模型通过mindspore.load
完成,并通过nn.GraphCell
将其封装为可执行的图模式,之后就可以像调用普通网络一样进行推理。这种方式简化了模型在不同环境下的部署流程,提高了模型的移植性。
保存和加载模型权重可以使用MindSpore的save_checkpoint和load_checkpoint、load_param_into_net。在保存模型权重时,需要先创建相同模型的实例,然后使用save_checkpoint接口将模型保存到指定的路径。在加载模型权重时,需要先创建相同模型的实例,然后使用load_checkpoint和load_param_into_net方法加载参数。
MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR),可以使用export接口将模型保存为MindIR。已有的MindIR模型可以方便地通过load接口加载,传入nn.GraphCell即可进行推理。