Week10—B—LIS & LCS(动态规划)

题目描述:

东东有两个序列A和B。

他想要知道序列A的LIS和序列AB的LCS的长度。

注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。


Input:

第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B

Output:

输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度

sample input:

5 5
1 3 2 5 4
2 4 3 1 5

sample output:

3 2

个人思路:

LIS(最长上升子序列):

  • 状态:定义fi表示以Ai结尾的最长上升序列的方程
  • 初始化:f1 = 1
  • 转换方程:fi = max{ fj | (j < i) && (Aj < Ai) } + 1
  • 根据上述,答案就是max(fi) 1<=i<=n
  • 时间复杂度:O(n^2)

LCS(最长公共子序列):

  • 状态:定义f[i][j]为A1—Ai 和 B1—Bj的LCS长度
  • 初始化:f[1][0] = f[0][1] = f[0][0] = 0;
  • 转换方程:
    当Ai == Bj时,f[i][j] = f[i-1][j-1] + 1;
    否则:f[i][j] = max(f[i-1][j], f[i][j-1]);
  • 最后的答案:f[n][m]
  • 时间复杂度:O(nm)

代码块:

#include <iostream>
#include <vector>
using namespace std;
const int maxn = 5e3+5;
long long numa[maxn], numb[maxn];
int m, n, f[maxn], f2[maxn][maxn];
void solvelis(){
    f[1] = 1;
    for(int i = 1; i <= n; ++i){
        int m = 0;
        for(int j = 1; j < i; ++j){
            if(numa[i] > numa[j])m = max(m,f[j]);
        }
        f[i] = m + 1;
    }
}
void solvelcs(){
    f2[1][0] = f2[0][1] = f2[0][0] = 0;
    for(int i = 1; i <= n; ++i){
        for(int j = 1; j <= m; ++j){
            if(numa[i] == numb[j])
                f2[i][j] = f2[i-1][j-1] + 1;
            else
                f2[i][j] = max(f2[i-1][j], f2[i][j-1]);
        }
    }
}
int main(int argc, char *argv[]){
    cin >> n >> m;
    for(int i = 1; i <= n; ++i) cin >> numa[i];
    for(int i = 1; i <= m; ++i) cin >> numb[i];

    solvelis();
    solvelcs();

    int maxllis = 0;
    for(int i = 1; i <= n; ++i){
        maxllis = max(f[i], maxllis);
    }
    cout << maxllis << " " << f2[n][m] << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值