题目描述:
东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input:
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output:
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
sample input:
5 5
1 3 2 5 4
2 4 3 1 5
sample output:
3 2
个人思路:
LIS(最长上升子序列):
- 状态:定义fi表示以Ai结尾的最长上升序列的方程
- 初始化:f1 = 1
- 转换方程:fi = max{ fj | (j < i) && (Aj < Ai) } + 1
- 根据上述,答案就是max(fi) 1<=i<=n
- 时间复杂度:O(n^2)
LCS(最长公共子序列):
- 状态:定义f[i][j]为A1—Ai 和 B1—Bj的LCS长度
- 初始化:f[1][0] = f[0][1] = f[0][0] = 0;
- 转换方程:
当Ai == Bj时,f[i][j] = f[i-1][j-1] + 1;
否则:f[i][j] = max(f[i-1][j], f[i][j-1]); - 最后的答案:f[n][m]
- 时间复杂度:O(nm)
代码块:
#include <iostream>
#include <vector>
using namespace std;
const int maxn = 5e3+5;
long long numa[maxn], numb[maxn];
int m, n, f[maxn], f2[maxn][maxn];
void solvelis(){
f[1] = 1;
for(int i = 1; i <= n; ++i){
int m = 0;
for(int j = 1; j < i; ++j){
if(numa[i] > numa[j])m = max(m,f[j]);
}
f[i] = m + 1;
}
}
void solvelcs(){
f2[1][0] = f2[0][1] = f2[0][0] = 0;
for(int i = 1; i <= n; ++i){
for(int j = 1; j <= m; ++j){
if(numa[i] == numb[j])
f2[i][j] = f2[i-1][j-1] + 1;
else
f2[i][j] = max(f2[i-1][j], f2[i][j-1]);
}
}
}
int main(int argc, char *argv[]){
cin >> n >> m;
for(int i = 1; i <= n; ++i) cin >> numa[i];
for(int i = 1; i <= m; ++i) cin >> numb[i];
solvelis();
solvelcs();
int maxllis = 0;
for(int i = 1; i <= n; ++i){
maxllis = max(f[i], maxllis);
}
cout << maxllis << " " << f2[n][m] << endl;
return 0;
}