JZOJ 5436 Group

Matrix

Description

这里写图片描述

Data Constraint

这里写图片描述

Solution

A 序列排序,然后考虑差分。
fi,j,k表示做到 A 序列的第i个数,还有 j 组没有分好,此时差值和为k的分组方案。
设当前元素的的差值为 val ,则 val = Ai - Ai1
原来的差值和为 k ,则新的差值和v= k +val* j
接下来考虑四种转移
1、新增加的元素作为新的一组的开始元素。

fi,j+1,v+= fi1,j,k

2、新的元素同时作为新的一组的开始元素和结束元素。

fi,j,v += fi1,j,k

3、新的元素作为未结束的j组中的一组的结束元素。

fi,j1,v += fi1,j,k * j j> 0

4、新的元素作为未结束的j组中的一组的未结束元素。

fi,j,v+= fi1,j,k * j j> 0

最后统计答案。

Ans= ki=0 fn,0,i

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

#define fo(i,j,l) for(int i=j;i<=l;i++)
#define fd(i,j,l) for(int i=j;i>=l;i--)

using namespace std;
typedef long long ll;
const ll N=12e2,M=250,mo=1e9+7;
ll f[2][M][N],a[N],b[N];
int n,m,j,k,l,i,o,p;

int main()
{
    cin>>n>>k;
    fo(i,1,n)scanf("%d",&a[i]);
    sort(a+1,a+n+1);
    int u=0,v;
    a[0]=0;
    fo(i,1,n)b[i]=a[i]-a[i-1];
    b[0]=0;
    f[0][0][0]=1;
    fo(l,1,n){
        v=1-u; 
        fo(i,0,l)
        fo(j,0,k)f[v][i][j]=0;
        fo(i,0,l-1)
        fo(j,0,k-i*b[l])
        if(f[u][i][j])
        {
            ll op=f[u][i][j]%mo,vv=j+i*b[l];
            f[v][i+1][vv]+=op;
            f[v][i][vv]+=op;
            if(i)f[v][i-1][vv]+=op*i;
            if(i)f[v][i][vv]+=op*i;
        }
        u=v;
    }
    ll ans=0;
    fo(i,0,k)ans=(ans+f[v][0][i])%mo;
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值