JZOJ 5457 项链

Description

现在有 m 种颜色的珠子。定义一个长度为n的项链为一个顺次连接 n 个珠子的环, 将所有旋转和翻转看作是等价的。
统计有多少个本质不同的项链, 对998244353取模。

Data Constraint

3 <=n<= 1018 2 <=m<= 1018 , 998244353 n ,m

Solution

恶补了一晚上群论。

若不考虑颜色转换,置换群的大小为 2n ,分别为 n 种旋转和n种翻转置换,显然,这 n 种置换中的若干种置换与其2n种中的一种置换的作用结果一样。
加上颜色转换,置换群的大小的大小即为 2nm

只考虑旋转置换不考虑颜色转换,对于向右旋转 i 位的置换,这个置换中的每个独立循环的大小为ngcd(i,n),所以循环节数即为 gcd(i,n)

接着考虑颜色转换,可以发现增加的颜色 j 满足m|( j *ngcd(i,n)),经过简单的数学计算,便可得到满足的颜色种类数为 gcd(m,ngcd(i,n)) ,置换的循环节数仍为 gcd(i,n) ,由 burnside 引理和 Polya 定理可得,考虑颜色转换的答案贡献即为

i=1n[mgcd(i,n)gcd(m,ngcd(i,n))]

接下来考虑翻转。若没有颜色转换,对于每一种对称轴穿过至少一个珠子的翻转置换,循环节数为 n+12 ,对于对称轴没有穿过珠子的翻转置换,循环节数为 n2
n 为奇数时,若加上颜色转换,所有的置换一定都没有不动点(每一种置换的对称轴一定穿过一个珠子),当n为偶数时, m 也为偶数时,对称轴不穿过珠子的置换 颜色编号增加m2可以构成一个循环节数为 n2 的置换。
进行分类讨论,就可以在 O (log n )的时间内求出翻转*颜色转换的答案。

现在回到旋转*颜色转换的答案求解,枚举gcd(i,n),即可得到原式为

i|nmigcd(m,ni)j=1n[gcd(j,n)=i]
i|nmigcd(m,ni)j=1n[gcd(ji,ni)=1]

继续化简得

i|nmigcd(m,ni)φ(ni)

可以发现,只要能够对 n 分解质因数,然后枚举n的因数(反正不会很多),就可以求出这个式子的值了。
由于 n 很大,需要用到Pollard_ rho 对其进行大整数因式分解。
最后答案要除去置换群的大小,即 2nm

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#pragma GCC optimize(3)
#include<cstring>
#include<ctime>

#define fo(i,j,l) for(int i=j;i<=l;i++)
#define fd(i,j,l) for(int i=j;i>=l;i--)
#define random(x) rand()%(x)

using namespace std;
typedef unsigned long long ll;
const ll N=100,mo=998244353;
ll x[N],oo,ss[N],cs[N],n,m;
int t; ll ans;

ll mod(ll x,ll y,ll m)
{
    ll tmp=(ll)((long double)x*y/m+1e-8)*m;
    return (x*y-tmp+m)%m;
}

ll ksm(ll o,ll t,ll m)
{
    ll y=1; o%=m; t=t%(m-1);
    for(;t;t>>=1,o=mod(o,o,m))
    if(t&1)y=mod(y,o,m);
    return y;
}

bool Miller_Rabin(ll o)
{
    if(!(o&1))return false;
    int y=0; ll u=o-1;
    for(;!(u&1);y++)u>>=1;
    fo(i,1,3){
        x[0]=rand()%(o-1)+1;
        x[0]=ksm(x[0],u,o);
        fo(l,1,y){
            x[l]=mod(x[l-1],x[l-1],o);
            if(x[l]==1&&x[l-1]!=1&&x[l-1]!=(o-1))return false;
        }
        if(x[y]!=1)return false;
    } return true;
}

ll iabs(ll o)
{return o<0?(-o):o;}

ll gcd(ll a,ll b)
{return b==0?a:gcd(b,a%b);}

void find(ll o)
{
    if(o==1)return;
    if(Miller_Rabin(o)){
        ss[++oo]=o; return;
    }
    ll c=random(o-1)+1,P=0;
    ll x2=random(o),x1=x2;int i=1,k=2;
    while(1){
        i++;
        x1=(mod(x1,x1,o)+c)%o;
        P=gcd(iabs(x2-x1),o);
        if(P>1&&P<o)break;
        if(x1==x2)x1=x2=random(o),c=random(o-1)+1;
        if(i==k)k<<=1,x2=x1;
    }
     find(P); find(o/P);
}

void dg(int o,ll k)
{
    if(o==oo+1){
        ll uu=n/k,y1=ksm(m%(mo),k,mo),y2=gcd(uu,m)%mo;
        ll yy=mod(y1,y2,mo),phi=uu;
        fo(i,1,oo)
        if(uu%ss[i]==0)phi=(phi/ss[i])*(ss[i]-1);
        ans=(ans+mod(phi%mo,yy,mo))%mo;
        return;
    }
    ll yy=1;
    for(int i=0;i<=cs[o];i++,yy*=ss[o])dg(o+1,k*yy);
}

int main()
{
    srand(23333);
    cin>>t;
    fo(tt,1,t){     
        scanf("%lld%lld",&n,&m);
        oo=0; ll nn=n;
        while(!(nn&1))nn>>=1,ss[++oo]=2; find(nn); sort(ss+1,ss+oo+1);
        int yy=0; ss[0]=0;
        fo(i,1,oo)if(ss[i]==ss[i-1])cs[yy]++;else ss[++yy]=ss[i],cs[yy]=1;
        oo=yy;
        ans=0; nn=n%mo; ll mm=m%mo;
        if(n%2==1)ans=mod(nn,ksm(mm,n/2+1,mo),mo);else {
            ans=mod((n/2)%mo,ksm(mm,n/2+1,mo),mo);
            ans=(ans+mod((n/2)%mo,ksm(mm,n/2,mo),mo)*(1+(m%2==0)))%mo; 
        }
        dg(1,1);
        ans=ans*ksm(2*mod(nn,mm,mo)%mo,mo-2,mo)%mo;
        printf("%lld\n",ans); 
    }
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值