JZOJ 5516 Function

Function

Description

σ0(n) = d|n1

i=1nd|iμ(d)σ0(id)σ0(id)

Data Constraint

n <=109

Solution

σ0(n) 就是 n 的约数个数。
显然有σ0=11

g(n) = σ20(n) , f(n) = d|iμ(d)g(id) ,则有 f=μg
显然 μ g 都是积性函数,所以f也是积性函数。
题目就是让我们求 ni=1f(i)

易得 f(pk) = 2k+1 (其中 p 为质数)
i=pa11pa22...paww
f 是积性函数可得f(i)= Πwi=1(2ai+1) = σ0(i2)
所以 Answer = ni=1σ0(i2)

我们有 σ0(i2) = Πwi=1(2ai+1)
将右边的式子拆开,然后考虑每一项的贡献,便可得

σ0(i2)=C{1,2,3...,w}2|C|Πai(iC)

经过仔细的思索便可以将上式写成另一种形式
σ0(i2)=d|i2r(d)

其中 r(d) 表示 d 的不同质因子的个数。
h(x)= 2r(x) ,则有 f=h1

考虑 h(x) 的另一个意义即 x 的无平方因子的约数个数,即

h(x)=d|xμ2(d)

再设 t(x)=μ2(x) ,则有 h=t1

所以

f=h1=(t1)1=t(11)=tσ0

所以

f(i)=d|iμ2(d)σ0(id)

Answer=i=1nd|iμ2(d)σ0(id)=i=1nμ2(i)[j=1niσ0(j)]

对式子分块求解,预处理出 μ2(i) σ0(i) n23 的前缀和,若超出了这个范围就 O(N) 暴力求解,听说复杂度和杜教筛的复杂度一样,为 O(n23)

ni=1σ0(i) = ni=1ni ,分块 O(n) 求解即可。

ni=1μ2(i) ,考虑从意义出发,这个式子就是让我们求 1 ~n内无平方因子的数的个数,考虑用莫比乌斯函数进行容斥,可得

i=1nμ2(i)=i=1nμ(i)ni2

O(n) 暴力统计即可。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>

#define fo(i,j,l) for(int i=j;i<=l;++i)
#define fd(i,j,l) for(int i=j;i>=l;--i)

using namespace std;
typedef long long ll;
const ll K=12e5,N=15e5;
int T,oo;
int mu[N],ss[N],cs[N];
ll qz[N],g[N],q[N],n;
bool bz[N];

inline ll min(ll a,ll b)
{return a<b?a:b;}

inline ll findmu(ll p)
{
    if(p<=K)return qz[p];
    ll u=(ll)sqrt(p),ans=0;
    fo(i,1,u)ans=ans+mu[i]*((p/i)/i);
    return ans;
}

inline ll findysh(ll p)
{
    if(p<=K)return q[p]; 
    int l=1,r; ll ans=0;
    while(l<=p){
        r=p/(p/l);
        ans=ans+(p/l)*(r-l+1);
        l=r+1;
    }
    return ans;
}

int main()
{
    freopen("function.in","r",stdin);
    freopen("function.out","w",stdout);
    cin>>T;
    cs[1]=mu[1]=g[1]=1;
    fo(i,2,K){
        if(!bz[i])ss[++oo]=i,mu[i]=-1,g[i]=2,cs[i]=2;
        fo(j,1,oo){
            if(i*ss[j]>K)break;
            bz[i*ss[j]]=true;
            if(i%ss[j]==0){
                mu[i*ss[j]]=0;
                cs[i*ss[j]]=cs[i]+1;
                g[i*ss[j]]=(g[i]/cs[i])*(cs[i]+1);
                break;
            }else cs[i*ss[j]]=2,g[i*ss[j]]=g[i]*2,mu[i*ss[j]]=-mu[i];
        }
    }
    fo(i,1,K)qz[i]=qz[i-1]+(mu[i]!=0);
    fo(i,1,K)q[i]=q[i-1]+g[i];
    fo(tt,1,T){
        scanf("%lld",&n);
        ll ans=0;
        ll l=1,r;
        while(l<=n){
            r=n/(n/l);
            ans=ans+(findmu(r)-findmu(l-1))*findysh(n/l);
            l=r+1;
        }
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值