Description
两个数字
x
和
Data Constraint
0<=T,Lx,Rx,Ly,Ry<261
Code
Ps.没开long long炸剩暴力分。
先考虑一下如果没有上下界的限制,那答案为显然为
2bits(T)
,其中
bits(T)
表示二进制下
1
的个数。
考虑暴力。
暴力枚举可能的
当递归到某个状态(设当前递归到了第
i
位)发现发现存在一个二元组它的
递归的时候顺便带上一个 216 级别的二进制数表示到当前状态下 16 种中的每种二元组是否存在,转移到下个状态的话随便分类讨论下就好了,加上个记忆化就能很好地保证复杂度了,时间复杂度 O(216w) ,然而我没加记忆化都能虐暴标程。
Code
/*记忆化什么的不存在的*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,j,l) for(int i=j;i<=l;++i)
#define fd(i,j,l) for(int i=j;i>=l;--i)
using namespace std;
typedef long long ll;
const ll N=80;
int w[N];
ll q1[2][N],q2[2][N],p1[2][N],p2[2][N],f[N];
ll d[N][3],m2[N],oo;
int qq[3],pp[3];
ll ans,T,lx,rx,ly,ry;
inline int max(int a,int b)
{return a>b?a:b;}
inline bool ok1(int po,ll op)
{return (q1[1][po]<=op)&&(q2[1][po]>=op);}
inline bool oo1(int po,ll op)
{return (q1[1][po]<op)&&(q2[1][po]>op);}
inline bool ok2(int po,ll op)
{return (p1[1][po]<=op)&&(p2[1][po]>=op);}
inline bool oo2(int po,ll op)
{return (p1[1][po]<op)&&(p2[1][po]>op);}
inline ll judge(ll p)
{return p<0?-1:p;}
void dg(int o)
{
if(o==0){
ans=ans+1; return;
}
ll v[N][3]; int k=oo;
fo(i,1,oo)v[i][1]=d[i][1],v[i][2]=d[i][2];
if(w[o]==0){
oo=0;
fo(i,1,k)if((ok1(o,v[i][1]<<1)||v[i][1]==-1)&&(ok2(o,v[i][2]<<1)||v[i][2]==-1)){
d[++oo][1]=judge(v[i][1]*2); d[oo][2]=judge(v[i][2]*2);
}
if(oo)dg(o-1);
}
else{
oo=0;
fo(i,1,k){
if((ok1(o,(v[i][1]<<1)^1)||v[i][1]==-1)&&(ok2(o,v[i][2]<<1)||v[i][2]==-1))
d[++oo][1]=judge((v[i][1]*2)+1),d[oo][2]=judge(v[i][2]*2);
if((ok1(o,v[i][1]<<1)||v[i][1]==-1)&&(ok2(o,(v[i][2]<<1)^1)||v[i][2]==-1))
d[++oo][1]=judge(v[i][1]*2),d[oo][2]=judge((v[i][2]*2)+1);
}
int ok=0;
fo(i,1,oo){
if(oo1(o,d[i][1]))d[i][1]=-1;
if(oo2(o,d[i][2]))d[i][2]=-1;
if(d[i][1]+d[i][2]==-2){
ok=1; break;
}
}
if(ok==1)ans=ans+m2[f[o-1]];else if(oo)dg(o-1);
ok=oo=0;
fo(i,1,k)
if((ok1(o,(v[i][1]<<1)^1)||v[i][1]==-1)&&(ok2(o,(v[i][2]<<1)^1)||v[i][2]==-1))
d[++oo][1]=judge((v[i][1]*2)+1),d[oo][2]=judge((v[i][2]*2)+1);
fo(i,1,oo){
if(oo1(o,d[i][1]))d[i][1]=-1;
if(oo2(o,d[i][2]))d[i][2]=-1;
if(d[i][1]+d[i][2]==-2){
ok=1; break;
}
}
if(ok==1)ans=ans+m2[f[o-1]];else if(oo)dg(o-1);
}
oo=k;
fo(i,1,oo)d[i][1]=v[i][1],d[i][2]=v[i][2];
}
int main()
{
cin>>T>>lx>>rx>>ly>>ry;
m2[0]=1;
fo(i,1,61)m2[i]=m2[i-1]<<1;
ll x=T;
for(;x;x>>=1)w[++w[0]]=x&1;
x=lx;
for(;x;x>>=1)q1[0][++qq[1]]=x&1;
x=rx;
for(;x;x>>=1)q2[0][++qq[2]]=x&1;
x=ly;
for(;x;x>>=1)p1[0][++pp[1]]=x&1;
x=ry;
for(;x;x>>=1)p2[0][++pp[2]]=x&1;
int ws=max(w[0],qq[1]); ws=max(ws,qq[2]);
ws=max(ws,pp[1]); ws=max(ws,pp[2]);
fo(i,1,ws)f[i]=f[i-1]+w[i];
fd(i,ws,1){
q1[1][i]=(q1[1][i+1]<<1)^q1[0][i];
q2[1][i]=(q2[1][i+1]<<1)^q2[0][i];
p1[1][i]=(p1[1][i+1]<<1)^p1[0][i];
p2[1][i]=(p2[1][i+1]<<1)^p2[0][i];
}
oo=1;
d[1][1]=d[1][2]=0;
dg(ws);
cout<<ans;
}