Min_25筛学习小记

前言

听说大家都会了 Min_25 M i n _ 25 或州阁筛了,虚的一批的我马上学了一下。

<script type="math/tex; mode=display" id="MathJax-Element-14"></script>

Min_25筛

首先这种筛法可以用来筛某种积性函数的前缀和,当然也不一定要积性函数,某些特殊的函数也能筛,听说常数和空间都比州阁筛优秀,以绝对优势踩爆州阁筛,时间复杂度和州阁筛一样,也是 O(n34log(n)) O ( n 3 4 l o g ( n ) ) ,当然本蒟蒻并不会证。

<script type="math/tex; mode=display" id="MathJax-Element-16"></script>

筛质数的函数值

现有一函数 F(x) F ( x ) ,求

i=2nF(i)[i] ∑ i = 2 n F ( i ) [ i 是 质 数 ]

举个例子,假设 F(x)=ik F ( x ) = i k ,那我们就是要求
i=2nik[i] ∑ i = 2 n i k [ i 是 质 数 ]

现在用 Min_25 M i n _ 25 筛求上式的值,首先先求出 n n 内的所有质数并排好序, pi p i 表示第 i i 个质数,设一共有v个质数。

再设

g(n,j)=i=2nik[ipji] g ( n , j ) = ∑ i = 2 n i k [ i 的 最 小 质 因 子 大 于 p j 或 者 i 是 质 数 ]

不难推出转移式

g(n,j)={g(n,j1)pkj[g(npj,j1)g(pj1,j1)]g(n,j1)p2jnp2jn g ( n , j ) = { g ( n , j − 1 ) − p j k [ g ( ⌊ n p j ⌋ , j − 1 ) − g ( p j − 1 , j − 1 ) ] p j 2 ≤ n g ( n , j − 1 ) p j 2 ≥ n

其中 g(pj1,j1) g ( p j − 1 , j − 1 ) 显然等于 ji=1pki ∑ i = 1 j p i k

那我们要求的显然就为 g(n,v) g ( n , v ) ,我们可以发现,上述转移式都是由 g(?,j1) g ( ? , j − 1 ) 转移到 g(?,j) g ( ? , j ) ,并且第一维可能的取值最多只有 n n 个,有时我们可以先预处理出第一维所有可能的取值,然后按照第二维分层算即可。

Code
//ask(n)=1^k+2^k+3^k+....+n^k
//quick(n)=n^k
//zh[n]=p[1]^k+p[2]^k+....+p[n]^k
#define fo(i,j,l) for(int i=j;i<=l;++i)
#define fd(i,j,l) for(int i=j;i>=l;--i)
ll l=1,r;
while(l<=n){
    ll len=n/l; r=n/len;
    if(len<=P)id1[len]=++m;else id2[r]=++m;
    g[m]=ask(len)-1; w[m]=len;
    //h[m]=len-1;
    l=r+1;
}
fo(i,1,v)
fo(j,1,m)if((ll)p[i]*p[i]>w[j])break;
else{
    int op=w[j]/p[i]<=P?id1[w[j]/p[i]]:id2[n/(w[j]/p[i])];
    g[j]=g[j]-quick(p[i])*(g[op]-zh[i-1]);
    //h[j]=h[j]-(h[op]-i+1);
}

同样的我们也能筛一个范围内质数的个数,代码中的 h h 数组求解的即为质数个数。

积性函数求前缀和

求积性函数的前缀和有两种求法(某些非积性的特殊函数也可以),一个是递归版,一个是非递归版,各有各的长处。
现在对积性函数 F(x) F ( x ) 求前缀和,即求 ni=1F(i) ∑ i = 1 n F ( i )

递归版


S(n,i)=i=2nF(i)[ipi] S ( n , i ) = ∑ i = 2 n F ( i ) [ i 的 最 小 质 因 子 不 小 于 p i ]

于是我们可以很容易的得到

S(n,i)=g(n,v)g(pi1,i1)+j=iv   e1pe+1jnF(pej)S(npej,j+1)+F(pe+1j) S ( n , i ) = g ( n , v ) − g ( p i − 1 , i − 1 ) + ∑ j = i v       ∑ e ≥ 1 且 p j e + 1 ≤ n F ( p j e ) S ( ⌊ n p j e ⌋ , j + 1 ) + F ( p j e + 1 )

那所求值显然为 S(n,1)+F(1) S ( n , 1 ) + F ( 1 ) ,实现用递归。

Code
//zh[n]=F(p[1])+F(p[2])+.....+F(p[n])
//P=sqrt(n)
inline ll ask(ll x,int k)
{
    if(x<=1||p[k]>x)return 0;
    int wz=x<=P?id1[x]:id2[n/x];
    ll ans=g[wz]-zh[k-1];
    for(int i=k;i<=v&&(ll)p[i]*p[i]<=x;++i)
    for(ll l=p[i],e=1;l*p[i]<=x;l=l*p[i],++e)
    ans=ans+ask(x/l,i+1)*F(l)+F(p[i]*l);
    return ans;
}
...
ans=ask(n,1)+F(1);
...

非递归版

方法和筛质数时的方法类似。


S(n,i)=i=2nF(i)[ipii] S ′ ( n , i ) = ∑ i = 2 n F ( i ) [ i 的 最 小 质 因 子 不 小 于 p i 或 i 是 质 数 ]

于是我们一样可以很容易的得到

S(n,i)={S(n,i+1)+e1 pe+1i n  F(pei)[S(npei,i+1)g(pi,i)]+F(pe+1i)S(n,i+1)p2inp2in S ′ ( n , i ) = { S ′ ( n , i + 1 ) + ∑ e ≥ 1 且   p i e + 1   ≤ n     F ( p i e ) [ S ( ⌊ n p i e ⌋ , i + 1 ) − g ( p i , i ) ] + F ( p i e + 1 ) p i 2 ≤ n S ′ ( n , i + 1 ) p i 2 ≥ n

那所求值显然为 S(n,1)+F(1) S ′ ( n , 1 ) + F ( 1 ) ,关于实现一样先离散出第一维所有可能的取值,同时我们也能观察到转移都是从 S(?,i+1) S ′ ( ? , i + 1 ) 转移到 S(?,i) S ′ ( ? , i ) ,一样以第二维分层计算即可。

Code
//zh[n]=F(p[1])+F(p[2])+.....+F(p[n])
//P=sqrt(n)
//id1[],id2[]均为离散数组
#define fd(i,j,l) for(int i=j;i>=l;--i)
fd(i,u,1){
    ll ww=ksm(p[i],k),U=(ll)p[i]*p[i];
    fo(j,1,m)if(U<=w[j]){
        for(ll o=p[i],u=w[j]/p[i];o*p[i]<=uu;o=o*p[i],u=u/p[i])
        {
            ok=(u<=P)?id1[u]:id2[n/u];
            g[j]=g[j]+(g[ok]-zh[i])*F(o1);
            g[j]=g[j]+F(o*p[i]);
        }
    }else break;
}
ans=g[1]+F(1);

<script type="math/tex; mode=display" id="MathJax-Element-46"></script>

关于两种版本的比较

首先如果仅是对一个 n n 求解,那显然是第一个版本更快,因为它比第二个版本少遍历了很多无用状态。
但我们再看第二个版本,(设第一维所有可能的取值为a1,a2,a3....au),我们可以发现第二个版本中不仅求出了 S(n,1) S ′ ( n , 1 ) ,还求出了 S(a1,1),S(a2,1),......S(au,1) S ′ ( a 1 , 1 ) , S ′ ( a 2 , 1 ) , . . . . . . S ′ ( a u , 1 ) ,而这是第一个版本做不到的,因此用哪个版本决定于题目。
事实证明当 n=109 n = 10 9 时,第一个版本比第二个版本快 13 1 3 甚至快 12 1 2

例题

Libre OJ #6053.简单的函数 Solution传送门
51Nod 1847 奇怪的数学题

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值