五分钟搭建微信机器人保姆级教程

由于自身在机器人方面滚爬多年,现在收藏几个宝藏机器人
推荐一下自己常用的机器人:

适合有技术开发的公司,可以自主开发所需要的功能!十分齐全
功能概述:
可开发的功能包括但不限于:

好友管理:添加好友、删除好友、修改备注、创建标签、获取好友列表、搜索好友信息
消息管理:发文本消息、图片消息、名片消息、动图表情、小程序、发文件、发送视频、发送URL链接
群管理:自动创群、修改群名称、邀请新成员、踢群成员、获取群列表、发送邀请链接、获取群聊。
朋友圈:发送朋友圈、朋友圈点赞、获取朋友圈列表、转发朋友圈、同步朋友圈,批量发送朋友圈
基于API您可以创造更多有趣的功能....

设置群公告

简要描述:

  • 设置群公告

请求URL:

  • http://域名地址/setChatRoomAnnouncement

请求方式:

  • POST

请求头Headers:

  • Content-Type:application/json
  • Authorization:login接口返回

参数:

参数名必选类型说明
wIdString登录实例标识
chatRoomIdString群号
contentString内容

请求参数示例

{
    "wId":"349be9b5-8734-45ce-811d-4e10ca568c67",
    "chatRoomId": "24187765053@chatroom",
    "content": "修改群公告执行成功"
}

成功返回示例

{
    "message": "成功",
    "code": "1000",
    "data": null
}

错误返回示例

{
    "message": "失败",
    "code": "1001",
    "data": null
}

返回数据:

参数名类型说明
codeString1000成功
1001失败
msgString反馈信息
dataJSONObject
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值