开发好机器学习模型只是完成了一半的工作。只有当模型被部署到生产环境并带来业务价值时,它才真正有用。
掌握模型部署的技能已经成为每一个数据科学家的必备能力,许多雇主也已经开始期望我们能够完成这一任务。因此,无论处于哪个水平的数据科学家,都有必要学习如何将模型部署到生产环境中。
本文将系统讲解如何将机器学习模型部署到生产环境。
废话不多说,让我们开始吧。
机器学习模型准备
我们将从准备即将部署到生产环境的模型开始。首先,需要为本教程设置虚拟环境。你可以在终端中运行以下命令:
python -m venv myvirtualenv
安装并激活虚拟环境后,需要安装所需的依赖包。请创建一个 requirements.txt
文件,并填入以下库列表:
pandas
scikit-learn
fastapi
pydantic
uvicorn
streamlit
准备好 requirements.txt
后,使用以下命令安装依赖:
pip install -r requirements.txt
一切准备就绪后,我们将开始开发机器学习模型。在本教程中,我们将使用 Kaggle 的糖尿病数据集。请将数据集放在 data
文件夹中。
然后,在 app
文件夹下创建一个名为 train_model.py
的文件,在其中使用以下代码训练机器学习模型:
import pandas as pd
import joblib
from sklearn.linear_model import LogisticRegression
data = pd.read_csv("data\\diabetes.csv")
X = data.drop('Outcome', axis=1)
y = data['Outcome']
model = LogisticRegression()
model.fit(X, y)
joblib.dump(model, 'models\\logreg_model.joblib')
你可以根据需要更改数据集和模型保存路径。这里将模型保存在 models
文件夹中。
由于本教程的重点是模型部署,因此我们将跳过数据准备和模型评估的部分。当模型准备好后,就可以进入部署准备环节。
模型部署
在本节中,我们将为模型预测创建 API,并通过 Docker 部署,并使用 Streamlit 前端进行测试。
首先,请确保你已经安装了 Docker Desktop,以便在本地进行测试。
接下来,在 app
文件夹下创建一个名为 main.py
的文件,并填写以下代码以生成 API:
from fastapi import FastAPI
from pydantic import BaseModel
import joblib
import pandas as pd
# 加载逻辑回归模型
model = joblib.load('../models/logreg_model.joblib')
# 定义输入数据模型
class DiabetesData(BaseModel):
Pregnancies: int
Glucose: int
BloodPressure: int
SkinThickness: int
Insulin: int
BMI: float
DiabetesPedigreeFunction: float
Age: int
app = FastAPI()
# 定义预测端点
@app.post("/predict")
def predict(data: DiabetesData):
input_data = {
'Pregnancies': [data.Pregnancies],
'Glucose': [data.Glucose],
'BloodPressure': [data.BloodPressure],
'SkinThickness': [data.SkinThickness],
'Insulin': [data.Insulin],
'BMI': [data.BMI],
'DiabetesPedigreeFunction': [data.DiabetesPedigreeFunction],
'Age': [data.Age]
}
input_df = pd.DataFrame(input_data)
# 进行预测
prediction = model.predict(input_df)
result = "Diabetes" if prediction[0] == 1 else "Not Diabetes"
return {"prediction": result}
此外,我们还需要一个前端网页来测试已部署的 API 模型。为此,在 app
文件夹下创建一个名为 frontend.py
的文件,并填写如下代码:
import streamlit as st
import requests
import json
API_URL = "http://localhost:8000/predict"
st.title("Diabetes Prediction App")
st.write("Enter the details below to make a prediction.")
pregnancies = st.number_input("Pregnancies", min_value=0, step=1)
glucose = st.number_input("Glucose", min_value=0, step=1)
blood_pressure = st.number_input("Blood Pressure", min_value=0, step=1)
skin_thickness = st.number_input("Skin Thickness", min_value=0, step=1)
insulin = st.number_input("Insulin", min_value=0, step=1)
bmi = st.number_input("BMI", min_value=0.0, step=0.1)
diabetes_pedigree_function = st.number_input("Diabetes Pedigree Function", min_value=0.0, step=0.1)
age = st.number_input("Age", min_value=0, step=1)
if st.button("Predict"):
input_data = {
"Pregnancies": pregnancies,
"Glucose": glucose,
"BloodPressure": blood_pressure,
"SkinThickness": skin_thickness,
"Insulin": insulin,
"BMI": bmi,
"DiabetesPedigreeFunction": diabetes_pedigree_function,
"Age": age
}
response = requests.post(API_URL, data=json.dumps(input_data), headers={"Content-Type": "application/json"})
if response.status_code == 200:
prediction = response.json().get("prediction", "No prediction")
st.success(f"Prediction: {prediction}")
else:
st.error("Error in making prediction. Please check your input data and try again.")
一切准备就绪后,我们将创建 Dockerfile 作为模型部署的基础。在 Dockerfile 中填写以下内容:
FROM python:3.9-slim
WORKDIR /app
COPY app /app
COPY models /models
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r requirements.txt
EXPOSE 8000 8501
CMD ["sh", "-c", "uvicorn main:app --host 0.0.0.0 --port 8000 & streamlit run frontend.py --server.port=8501 --server.enableCORS=false"]
完成 Dockerfile 后,在终端运行以下命令以构建镜像:
docker build -t diabetes-prediction-app .
上述命令会为我们的模型容器创建 Docker 镜像。然后,使用以下命令部署模型 API:
docker run -d -p 8000:8000 -p 8501:8501 --name diabetes-prediction-container diabetes-prediction-app
确保容器运行后,可以通过以下地址访问前端页面:
http://localhost:8501/
此时,前端页面应如下图所示
机器学习模型生产部署全流程指南
如果一切顺利,恭喜你!你已经成功将机器学习模型部署到生产环境。
结论
在本文中,我们介绍了如何通过 FastAPI 和 Docker,将机器学习模型简单、高效地部署到生产环境中。
当然,关于在生产环境下维护和监控模型,还有许多内容值得进一步学习。而将模型部署到云端,则需要另行教程来详细讲解,敬请期待后续内容。
希望本教程对你有所帮助!