梅尔频率倒谱系数(MFCC)的提取过程与C++代码实现

本文详细介绍了MFCC(梅尔频率倒谱系数)的提取过程,包括预加重、分帧、加窗、补零、FFT变换、梅尔滤波、对数运算、DCT变换和归一化等步骤,并提供了C++代码实现。MFCC常用于语音识别等领域。
摘要由CSDN通过智能技术生成

MFCC参数提取步骤

——>预加重

——>分帧

——>对每一帧加窗

——>对每一帧补零

——>各帧信号的FFT变换及其功率谱

——>梅尔滤波(通过40个滤波器)

——>取对数

——>DCT变换

——>归一化

 

1.预加重

如果数据在低频的强度大于高频,就会不利于处理,因此需要通过一个传递函数为s[n]-a*s[n]的高通滤波器。滤去数据中的低频成分,使高频特性更加突现。

 

 

2.分帧

分帧就是将N个采样点集合成一个观测单位。我们设定每帧涵盖的时间是25ms,因为采样率是16000,所以得到每帧的样本点个数是400。

另外,为了避免相邻两帧的变化过大,因此会让两相邻帧之间有一段重叠区域。我们设定的重叠区域是15ms,所以就是每隔10ms取一帧。

 

 

3.对每一帧加窗

分帧后马上进行FFT,由于转换时会将帧内信号当作周期信号处理,所以在帧的两个端点处会发生突变,转换出来的频谱与原信号频谱差别很大。所以要对每一帧加窗,使帧内信号作FFT时的两个端点处不会发生突变。

我们采用的窗是汉明窗:(M为帧长,即400)

 

 

4.对每一帧补零

我们要对每一帧信号进行FFT,而FFT要求输入数据长度一定是2^K,现在一帧为400个采样点,所以补零至最接近的512位。

 

5.各帧信号的FFT变换及其功率谱

对分帧加窗后的各帧信号进行512点的FFT变换得到各帧的频谱。并对语音信号的频谱取模平方得到语音信号的功率谱。

 

6.梅尔滤波(通过40个滤波器)

40个三角滤波器在MEL谱上均匀分布,每两个滤波器间有50%的重叠部分。

所以要先把实际频率转换成梅尔频率,实际频率最小为0Hz,最大为16000 / 2 = 8000Hz 

 

转换成梅尔频率后,我们要实现的是40个滤波器,所以计算这40个滤波器的梅尔频率分布,然后把梅尔频率转换成实际频率

 

评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值