GRASP:Greedy Randomized Adaptive Search Procedures 贪心随机自适应搜索算法的基本思想

GRASP,这个算法的名字取得真好。

GRASP在许多组合优化问题中都有应用。

GRASP是一个多起点的迭代过程,每一次迭代由两个阶段组成:一是产生可行解的构造阶段;二是寻找局部最优解的局部搜索阶段。如果局部最优解S比当前搜索到的最优解S*还要优的话,就更新S*。


该算法的基本架构如下:


Max_Iterations是迭代次数

迭代之前先贪心随机构造一个解

然后判断可

### 贪婪随机自适应搜索算法概述 贪婪随机自适应搜索程序(GRASP, Greedy Randomized Adaptive Search Procedure)是一种元启发式方法,用于解决组合优化问题。该算法通过迭代构建候选解决方案并局部改进这些方案来寻找近似最优解[^1]。 #### GRASP基本结构 GRASP 结构由两个主要阶段组成: - **构造阶段**:在此期间,部分基于贪心策略的部分解逐步扩展成完整的可行解。此过程引入了一定程度的随机化以探索不同的解空间区域。 - **局部搜索阶段**:一旦获得初始解,则对其进行一系列邻域移动尝试改善质量直到无法再提高为止;最终得到的结果即为当前迭代的最佳解[^2]。 ```python def grasp(num_iterations=100): best_solution = None best_cost = float('inf') for _ in range(num_iterations): # 构造阶段 solution = construct_greedy_randomized_solution() # 局部搜索阶段 improved_solution = local_search(solution) cost = evaluate(improved_solution) if cost < best_cost: best_solution = improved_solution best_cost = cost return best_solution, best_cost ``` #### 应用实例 ##### 旅行商问题(TSP) 对于经典的 TSP 问题GRASP 可以有效地找到较优路径。具体来说,在构造过程中会优先考虑距离最近的城市加入到路线中去,但同时也允许一定概率选取次佳选项以便跳出局部极值陷阱。 ##### 单机调度问题(SMSP) 当面对单台机器上多个作业需安排先后顺序的情况时——特别是存在提前完成惩罚以及延迟交付罚款的情形下——采用 GRASP 方法同样能够提供良好的性能表现。它可以通过调整各任务间的相对位置关系使得总成本最小化。 ##### 组装线平衡问题(ALBP) 在制造业环境中,为了使组装线上各个工位的工作量尽可能均衡分布进而提升工作效率,可以利用 GRASP 来规划最佳的任务分配模式。这不仅有助于减少瓶颈环节的影响,还能促进资源的有效配置[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值