模型介绍
注意,有encoder和decoder 两个。建议直接用EfficientSam (accuracy)对应的模型。
模型下载地址
# 模型下载地址
# sam_vit_b "SegmentAnything (speed)"
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.encoder.onnx",
md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.decoder.onnx",
md5="4253558be238c15fc265a7a876aaec82",
# sam_vit_l "SegmentAnything (balanced)"
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.encoder.onnx",
md5="080004dc9992724d360a49399d1ee24b",
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.decoder.onnx",
md5="851b7faac91e8e23940ee1294231d5c7",
# sam_vit_h "SegmentAnything (accuracy)" 这个模型效果可以,速度巨慢
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.encoder.onnx",
md5="958b5710d25b198d765fb6b94798f49e",
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.decoder.onnx",
md5="a997a408347aa081b17a3ffff9f42a80",
# efficient_sam_vitt "EfficientSam (speed)"
url="https://github.com/labelmeai/efficient-sam/releases/download/onnx-models-20231225/efficient_sam_vitt_encoder.onnx",
md5="2d4a1303ff0e19fe4a8b8ede69c2f5c7",
url="https://github.com/labelmeai/efficient-sam/releases/download/onnx-models-20231225/efficient_sam_vitt_decoder.onnx",
md5="be3575ca4ed9b35821ac30991ab01843",
# efficient_sam_vits "EfficientSam (accuracy)" 这个模型速度和效果都非常不错,建议直接用这个
url="https://github.com/labelmeai/efficient-sam/releases/download/onnx-models-20231225/efficient_sam_vits_encoder.onnx",
md5="7d97d23e8e0847d4475ca7c9f80da96d",
url="https://github.com/labelmeai/efficient-sam/releases/download/onnx-models-20231225/efficient_sam_vits_decoder.onnx",
md5="d9372f4a7bbb1a01d236b0508300b994",
模型保存位置
下载模型后,放到 /home/wqg/.cache/gdown 下,需要注意一下,要把模型的名称修改一下。
SegmentAnything系列,模型名称加上这个:
https-COLON--SLASH--SLASH-github.com-SLASH-wkentaro-SLASH-labelme-SLASH-releases-SLASH-download-SLASH-sam-20230416-SLASH-
EfficientSam 系列,模型名称前加上这个:
https-COLON--SLASH--SLASH-github.com-SLASH-labelmeai-SLASH-efficient-sam-SLASH-releases-SLASH-download-SLASH-onnx-models-20231225-SLASH-
最后的模型如下:
正常使用:
完成上述操作后打开labelme.exe并导入需要打标签的图片,右键选择创建AI多边形,如下图所示。