模型介绍
注意,有encoder和decoder 两个。建议直接用EfficientSam (accuracy)对应的模型。
模型下载地址
# 模型下载地址
# sam_vit_b "SegmentAnything (speed)"
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.encoder.onnx",
md5="80fd8d0ab6c6ae8cb7b3bd5f368a752c",
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_b_01ec64.quantized.decoder.onnx",
md5="4253558be238c15fc265a7a876aaec82",
# sam_vit_l "SegmentAnything (balanced)"
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.encoder.onnx",
md5="080004dc9992724d360a49399d1ee24b",
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_l_0b3195.quantized.decoder.onnx",
md5="851b7faac91e8e23940ee1294231d5c7",
# sam_vit_h "SegmentAnything (accuracy)" 这个模型效果可以,速度巨慢
url="https://github.com/wkentaro/labelme/releases/download/sam-20230416/sam_vit_h_4b8939.quantized.encoder.onn

最低0.47元/天 解锁文章
1970

被折叠的 条评论
为什么被折叠?



