CS224d Assignment1 part2(Neural Network Basics)非代码部分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由图知计算过程为:
Z 1 = x W 1 + b 1 Z_1=xW_1+b_1 Z1=xW1+b1
②隐藏层 h = s i g m o i d ( Z 1 ) h=sigmoid(Z_1) h=sigmoid(Z1)
Z 2 = h W 2 + b 2 Z_2=hW_2+b_2 Z2=hW2+b2
④输出层 y ^ = s o f t m a x ( Z 2 ) \widehat{y}=softmax(Z_2) y =softmax(Z2)
损失函数:交叉熵
在这里插入图片描述
求导过程:
在这里插入图片描述
在这里插入图片描述
图中为全连接:
则参数个数:
D x ∗ H + H + H ∗ D y + H D_x*H+H+H*D_y+H DxH+H+HDy+H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值