由图知计算过程为:
①
Z
1
=
x
W
1
+
b
1
Z_1=xW_1+b_1
Z1=xW1+b1
②隐藏层
h
=
s
i
g
m
o
i
d
(
Z
1
)
h=sigmoid(Z_1)
h=sigmoid(Z1)
③
Z
2
=
h
W
2
+
b
2
Z_2=hW_2+b_2
Z2=hW2+b2
④输出层
y
^
=
s
o
f
t
m
a
x
(
Z
2
)
\widehat{y}=softmax(Z_2)
y
=softmax(Z2)
损失函数:交叉熵
求导过程:
图中为全连接:
则参数个数:
D
x
∗
H
+
H
+
H
∗
D
y
+
H
D_x*H+H+H*D_y+H
Dx∗H+H+H∗Dy+H
CS224d Assignment1 part2(Neural Network Basics)非代码部分
最新推荐文章于 2022-10-15 09:08:15 发布