Python生成已分类数据集

本文介绍了如何使用scikit-learn库的make_blobs方法生成聚类算法的测试数据,这些数据适用于评估K近邻(KNN)算法的效果。通过指定特征数量、中心点和数据范围,可以创建多类别数据集。
摘要由CSDN通过智能技术生成

1. 代码

from sklearn.datasets import make_blobs#使用make_blobs进行knn分类
from sklearn.neighbors import KNeighborsClassifier#导入KNN分类器
import matplotlib.pyplot as plt#导入画图
from sklearn.model_selection import train_test_split#导入数据集拆分工具
data=make_blobs(n_samples=200,centers=2,random_state=8)
X,y=data
plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.spring,edgecolor='k')
plt.show()

2. 截图

在这里插入图片描述

3. 知识点

  1. scikit常用数据集数据加载工具
  2. scikit中的make_blobs方法常被用来生成聚类算法的测试数据,直观地说
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值