Datawhale_街景字符编码识别-Task3—字符识别模型

1、加载库

import numpy as np
import tensorflow as tf
from tensorflow import keras
import pandas as pd

from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
import matplotlib.image as mpimg
import matplotlib.patches as patches

from pandas.plotting import register_matplotlib_converters
from sklearn.model_selection import train_test_split
import urllib
import os
import csv
import cv2
import time
from PIL import Image

import pprint

2、参数设置

train_label = './train.json'
val_label = './val.json'

width = 224
height = 112
channel = 3
batch_size = 64

3、加载并查看数据集

json_train = pd.read_json(train_label)
json_valid = pd.read_json(val_label)
json_train.head()

在这里插入图片描述

json_train = json_train.T
json_valid = json_valid.T
json_train.head()

在这里插入图片描述

json_train = json_train.reset_index(drop=False)

json_valid = json_valid.reset_index(drop=False)
json_train.head()

在这里插入图片描述

4、添加分类标签

train_label_fill_in_x = json_train['label'].map(lambda x: x[:4] + (4 - len(x))*[10])
valid_label_fill_in_x = json_valid['label'].map(lambda x: x[:4] + (4 - len(x))*[10])
json_train['label_train'] = train_label_fill_in_x
json_valid['label_valid'] = valid_label_fill_in_x
json_train.head()

在这里插入图片描述

def sep_dig_labels(df, label):
    
    d0=[]
    d1=[]
    d2=[]
    d3=[]
    
    extract_labels = df[label]
    
    for each in extract_labels:
        d0.append(each[0])
        d1.append(each[1])
        d2.append(each[2])
        d3.append(each[3])
    
    df['d0'] = d0
    df['d1'] = d1
    df['d2'] = d2
    df['d3'] = d3
sep_dig_labels(json_train, 'label_train')
sep_dig_labels(json_valid, 'label_valid')
json_train.head()

在这里插入图片描述

json_valid.head()

在这里插入图片描述

5、构建数据集

train_folder = './train/'
valid_folder = './val/'
trainGen = keras.preprocessing.image.ImageDataGenerator(rescale=1./255,
                                                        rotation_range=40,
                                                        width_shift_range=0.2,
                                                        height_shift_range=0.2,
                                                        shear_range=0.2,
                                                        zoom_range=0.2,
                                                        fill_mode='nearest')
validGen=keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
train_generator = trainGen.flow_from_dataframe(json_train,                 #dataframe
                                               #directory=train_folder,     #根目录(当前路径) 
                                               directory='./train',     #根目录(当前路径) 
                                               x_col='index',
                                               y_col=['d0','d1','d2','d3'],
                                               target_size=(width, height),
                                               batch_size=batch_size,
                                               seed=3,
                                               shuffle=True,
                                               class_mode='multi_output',)

在这里插入图片描述

valid_generator = validGen.flow_from_dataframe(json_valid,
                                              directory='./val',
                                              x_col='index',
                                              y_col=['d0','d1','d2','d3'],
                                              target_size=(width, height),
                                              batch_size=batch_size,
                                              seed=3,
                                              shuffle=False,
                                              class_mode='multi_output',)

在这里插入图片描述

6、定义模型

6.1、自定义模型

input_img = keras.layers.Input(shape=(width, height, channel), name='img')

# # ----------------------
x = keras.layers.Conv2D(filters=64,kernel_size=3,padding='same',activation='relu')(input_img)

# x = keras.layers.BatchNormalization()(x)

x = keras.layers.MaxPooling2D(pool_size=(2,2))(x)

# x = keras.layers.Dropout(0.2)(x)
# # ----------------------
x = keras.layers.Conv2D(filters=64,kernel_size=3,activation='relu')(x)

# x = keras.layers.BatchNormalization()(x)

x = keras.layers.MaxPooling2D(pool_size=(2,2))(x)

# x = keras.layers.Dropout(0.2)(x)
# # ----------------------
x = keras.layers.Conv2D(filters=128,kernel_size=3,activation='relu')(x)

# x = keras.layers.BatchNormalization()(x)

x = keras.layers.MaxPooling2D(pool_size=(2,2))(x)

# x = keras.layers.Dropout(0.2)(x)
# # ----------------------
x = keras.layers.Conv2D(filters=128,kernel_size=3,activation='relu')(x)

# x = keras.layers.BatchNormalization()(x)

x = keras.layers.MaxPooling2D(pool_size=(2,2))(x)

# x = keras.layers.Dropout(0.2)(x)
# # ----------------------
x = keras.layers.Conv2D(filters=256,kernel_size=3,activation='relu')(x)

# x = keras.layers.BatchNormalization()(x)

x = keras.layers.MaxPooling2D(pool_size=(2,2))(x)

# x = keras.layers.Dropout(0.2)(x)
# # ----------------------
x = keras.layers.Flatten()(x)

dig0 = keras.layers.Dense(11, activation='softmax', name='d0')(x)
dig1 = keras.layers.Dense(11, activation='softmax', name='d1')(x)
dig2 = keras.layers.Dense(11, activation='softmax', name='d2')(x)
dig3 = keras.layers.Dense(11, activation='softmax', name='d3')(x)

model = keras.models.Model(input_img, [dig0,dig1,dig2,dig3])

model.summary()

在这里插入图片描述

losses = {
    "d0": 'sparse_categorical_crossentropy',
    "d1": 'sparse_categorical_crossentropy',
    "d2": 'sparse_categorical_crossentropy',
    "d3": 'sparse_categorical_crossentropy',
}
model.compile(optimizer='adam',
              loss=losses,
              metrics=['accuracy'])
logdir = os.path.join('hourse_num')#'./hourse_num'
if not os.path.exists(logdir):
    os.mkdir(logdir)
    
output_model_file = os.path.join(logdir,
                                 "first_try.h5")
callbacks=[
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,
                                    save_best_only = True,
                                    save_weights_only = False),
    keras.callbacks.EarlyStopping(patience=5,min_delta=1e-3)
]
train_num = train_generator.samples
valid_num = valid_generator.samples
print(train_num)
print(valid_num)

在这里插入图片描述

epochs=10

history = model.fit_generator(train_generator,
                              steps_per_epoch=train_num//batch_size,
                              validation_data=valid_generator,
                              validation_steps=valid_num//batch_size,
                              epochs=epochs,
                              callbacks=callbacks)

在这里插入图片描述

6.2、VGG16模型

1、使用tensorflow2.0自带的VGG16迁移学习
2、epochs = 10
3、batch_size = 32
4、使用验证集验证模型
5、使用tensorflow回调函数callbacks实现:保存模型(h5格式)、提前终止模型、tensorboard显示

from tensorflow.keras.applications import VGG16

input_img = keras.layers.Input(shape=(width, height, channel), name='img')

conv_base = VGG16(weights='imagenet',
                  include_top=False,
                  input_shape=(width, height, channel))(input_img)
conv_base.trainable = False

x = keras.layers.Flatten()(conv_base)

dig0 = keras.layers.Dense(11, activation='softmax', name='d0')(x)
dig1 = keras.layers.Dense(11, activation='softmax', name='d1')(x)
dig2 = keras.layers.Dense(11, activation='softmax', name='d2')(x)
dig3 = keras.layers.Dense(11, activation='softmax', name='d3')(x)

#conv_base.trainable = False

model = keras.models.Model(input_img, [dig0,dig1,dig2,dig3])
model.summary()

在这里插入图片描述

losses = {
    "d0": 'sparse_categorical_crossentropy',
    "d1": 'sparse_categorical_crossentropy',
    "d2": 'sparse_categorical_crossentropy',
    "d3": 'sparse_categorical_crossentropy',
}
model.compile(optimizer='adam',
              loss=losses,
              metrics=['accuracy'])
logdir = os.path.join('hourse_num')#'./hourse_num'
if not os.path.exists(logdir):
    os.mkdir(logdir)
    
output_model_file = os.path.join(logdir,
                                 "first_try.h5")
callbacks=[
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,
                                    save_best_only = True,
                                    save_weights_only = False),
    keras.callbacks.EarlyStopping(patience=5,min_delta=1e-3)
]
train_num = train_generator.samples
valid_num = valid_generator.samples
print(train_num)
print(valid_num)
epochs=10

history = model.fit_generator(train_generator,
                              steps_per_epoch=train_num//batch_size,
                              validation_data=valid_generator,
                              validation_steps=valid_num//batch_size,
                              epochs=epochs,
                              callbacks=callbacks)

在这里插入图片描述

7、预测并生成提交文件





评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值