该题主要是对FMCW雷达的信号进行处理,主要用到了矩阵处理的一些知识
现有移动场景定位产品通常采用调频连续波雷达FMCW (frequency-modulated continuous-wave) ,通过发射线性增长频率的信号波,以及接收反射回来的信号波来进行定位,示意图如下
其中PA(Power Amplifier),LNA(Low Noise Amplifier),ADC(Analogue-to-Digital Converter)。现有产品大多采用基线算法,其得到的分辨率较低,不能满足日益增长的超分辨定位需求,亟需通过建模以及设计对应算法来提高分辨率,以提升产品竞争力。
问题:
- 针对提供的无噪声仿真数据,建立定位模型,计算出物体相对位置,并以二维极坐标图(横坐标表示距离,纵坐标表示角度)展示。
- 针对提供的高斯噪声仿真数据,利用一个chirp周期内的IF信号,设计超分辨算法精确定位多个物体。
- 设计在线低复杂度算法,利用一帧中频信号来超分辨定位,并且通过数值实验验证算法性能。针对提供的一帧数据,计算出物体相对运动轨迹,并以二维图(横坐标表示距离,纵坐标表示角度)展示。
- 考虑实际场景中由于老化等原因,天线阵列对于自身的定位也会有误差。针对提供的仿真数据,设计提升定位算法的鲁棒性的改进算法。
理论分析:
这题主要是在FMCW雷达场景下对目标的位置和方位进行估计,FMCW雷达可以将信号的传输引起的时延转化为频率差,收端对这个频率差进行检测就可以估计反射信号的时延是多少(反射信号的时延包含来回的时延),然后不同信号的来向会导致多天线的信号相位存在偏差,利用这种偏差既可以对信号的到达方向进行估计。
上述距离和角度常规的处理方式是FFT(前提是线阵)、MUSIC、压缩感知重构,实际后续处理也是在这些算法的基础上进行开展。
第一题问题思路与结果:
针对提供的无噪声仿真数据,建立定位模型,计算出物体相对位置,并以二维极坐标图(横坐标表示距离,纵坐标表示角度)展示。
问题:针对提供的无噪声仿真数据,建立定位模型,计算出物体相对位置,并以二维极坐标图(横坐标表示距离,纵坐标表示角度)展示。
解析:这里仅仅要求对信号的距离和角度进行估计,没有做超分辨率的要求,因此这里考虑使用最普遍的FFT算法进行估计。(第一问仅考虑单个Chirp周期下的信号处理。)
首先根据题目内的公式可知,接收信号Zq={znt,n=0,⋯,Na-1,t=0,⋯,[TTs]-1}表示第q个chirp周期内采集的信号,
znt=k=1Ksn,kt+wn(t), t=0,1,2,⋯,[TTs]-1
这里wn表示噪声。 其中的信号部分满足下述公式
sn,kt=akej2πγTstτ+2πf0τ
=akej2πγ TstRn,kc +2π f0Rn,kc, t=0,1,2,⋯,[TTs]-1
注意上述公式中相位部分(2πγ TstRn,kc +2π f0Rn,kc)可以分别分为两部分2πγ TstRn,kc和 2π f0Rn,kc,前者相位随时间变化和距离相关,后者相位不随时间变化和距离相关(注意这里的时间指的是快时间,表示一个chirp符号内的,可以自行百度了解)
根据多天线的远场假设,不同天线之间的距离差和天线间距和信号方向有关,其距离差值的量级和波长的量级相当,本题目中主要考虑线阵场景满足下式子
Rn,k-Rn,k-1=天线间距*sin(θk)
另外有于γ Tst(2.4e9)远小于f0(78e9),因此不同天线之间的前一部分相位差2πγ TstRn,kc可以忽略不记,多天线仅根据2π f0Rn,kc部分的相位差进行角度估计
单个天线上后一步相位是固定值,可以根据信号频率估计距离。
第二题问题思路与结果:
针对提供的高斯噪声仿真数据,利用一个chirp周期内的IF信号,设计超分辨算法精确定位多个物体。
采用压缩感知重构
第三题问题思路与结果:
距离和角度分别进行压缩感知,然后进行数据关联。