网络模型结构信息可视化(Tensorflow-tensorboard、 paddle-visualDL等)

本文介绍了如何使用TensorFlow和飞浆Paddle进行网络结构的可视化,包括通过SSH连接远程服务器上的TensorBoard,以及安装和使用VisualDL进行日志记录和模型保存。在训练过程中,利用VisualDL保存测试损失值、准确率和参数分布,并展示了如何启动VisualDL服务器以在浏览器中查看日志。此外,还详细说明了模型保存的步骤和使用浏览器访问VisualDL的地址。
摘要由CSDN通过智能技术生成

TensorFlow 可视化网络结构图

ssh -L 6008:127.0.0.1:6006 ai@1xx.xx.1.xx

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

飞浆paddle 可视化网络结构图

#安装可视化工具 visualDL
pip install visualdl 

训练保存日志文件

# 保存测试的日志

writer = LogWriter(logdir="./random_log")
for test_step in range(1, 1000, 10)
	writer.add_scalar(tag="测试/损失值", step=test_step, value=test_cost[0])
	writer.add_scalar(tag="测试/准确率", step=test_step, value=test_acc[0])
	writer.add_histogram(tag="训练/参数分布", step=train_step, values=params.flatten(), buckets=50)
	test_step += 1

保存模型

###  路劲
save_path = './models/'
shutil.rmtree(save_path, ignore_errors=True)
os.makedirs(save_path)
###  保存预测模型
fluid.io.save_inference_model(dirname=save_path,
                               feeded_var_names=[image.name],
                               target_vars=[model],
                               executor=exe)
                      

保存的文件夹和对应的终端命令启动可视化
在这里插入图片描述

# --logdir=保存的日志文件位置 --port=端口号
visualdl --logdir=log --port=8086

使用浏览器打开
127.0.0.1:8086

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值