自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 【转】扩展卡尔曼滤波EKF与多传感器融合

转自:https://blog.csdn.net/young_gy/article/details/78468153 Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍E...

2019-06-19 15:16:30

阅读数 376

评论数 0

转载 【转】无损卡尔曼滤波UKF与多传感器融合

转自:https://blog.csdn.net/Young_Gy/article/details/78542754 非线性系统状态估计是一大难点。KF(Kalman Filter)只适用于线性系统。EKF(Extended Kalman Filter)利用泰勒展开将非线性系统线性化。可...

2019-06-19 15:15:24

阅读数 185

评论数 0

转载 【MOT评价指标】MOTA MOTAL MOTP Rcll IDF1 MT ML FP FN ID_SW Frag Hz

转自:https://blog.csdn.net/ycc2011/article/details/86633768 根据MOTchallenge官方解释给出:     resource:  

2019-02-14 13:52:12

阅读数 666

评论数 0

转载 【转】在ncnn上把玩mobileNet

转自:https://blog.csdn.net/computerme/article/details/77876633 ncnn是腾讯优图最近开源的适合移动端的深度学习框架。mobileNet是谷歌在2017年4月份发表的论文MobileNets: Efficient Convolutiona...

2018-08-30 10:06:58

阅读数 511

评论数 0

转载 【转】CycleGAN:图片风格,想换就换 | ICCV 2017论文解读

转自:http://www.sohu.com/a/225520144_500659 源项目主页:https://junyanz.github.io/CycleGAN/ 本期推荐的论文笔记来自 PaperWeekly 社区用户@LUOHAO。本文提出的模型名为 CycleGAN,作者希望在不借助...

2018-08-09 08:35:25

阅读数 581

评论数 0

转载 【转】密集人体姿态估计:2D图像帧可实时生成UV贴图(附论文)

转自:https://blog.csdn.net/yH0VLDe8VG8ep9VGe/article/details/79256435 Facebook人工智能研究院和法国国立计算机及自动化研究院最近提出了一种密集人体姿态估计新方法:DensePose-RCNN,同时宣布即将开源人体姿态数据集D...

2018-07-21 17:58:06

阅读数 367

评论数 0

转载 【转】DensePose:Dense Human Pose Estimation In TheWild

转自:https://blog.csdn.net/qq_38213612/article/details/80943401 个人的一些拙见,欢迎批评指正,欢迎互相交流… 一、概述预览 DensePose 估计旨在完成从 RGB图像中所有的人体像素 到 人体3D表面 的映射。 相关构成,用文中的...

2018-07-21 17:54:57

阅读数 398

评论数 0

转载 【转】FAIR联合INRIA提出DensePose-RCNN,更好地实现人体姿态估计

转自:http://www.sohu.com/a/221500552_390227 图:pixabay 原文来源:arXiv 作者:Rıza Alp Guler、Natalia Neverova、Iasonas Kokkinos 「雷克世界」编译:嗯~阿童木呀 在这项研究中,我们在RGB...

2018-07-21 16:00:03

阅读数 541

评论数 0

转载 【转】DensePose: Dense Human Pose Estimation In The Wild

转自:https://blog.csdn.net/sunshine_010/article/details/80039493 In this work, we establish dense correspondences between an RGB image and a surface-b...

2018-07-21 15:58:38

阅读数 302

评论数 0

转载 【转】《Cascaded Pyramid Network for Multi-Person Pose Estimation》--旷世2017COCO keypoints冠军论文解读

转自:https://blog.csdn.net/zhangboshen/article/details/78836704简介《Cascaded Pyramid Network for Multi-Person Pose Estimation》,这是Face++旷世科技2017年取得COCO Ke...

2018-07-16 08:11:14

阅读数 207

评论数 0

转载 【转】使用arxiv检索论文

转自:https://blog.csdn.net/u011092188/article/details/69275449?locationNum=10&fps=1以cs.CV为例:默认打开是http://arxiv.org/list/cs.CV/re...

2018-06-17 14:05:49

阅读数 1453

评论数 0

转载 【转】初识caffe2

转自:https://blog.csdn.net/wydbyxr/article/details/77856209基本的认识Caffe2 中基本计算单元之一是 Operators。每个 Operator 包含给定适当数量和类型的输入和参数来计算输出所需的逻辑。caffe2 宣称是轻量级、模块化和可...

2018-06-01 17:51:53

阅读数 186

评论数 0

转载 【转】多类分类下为什么用softmax而不是用其他归一化方法?

转自:https://www.zhihu.com/question/40403377?sort=created有两点原因。softmax的形式为:原因之一在于softmax设计的初衷,是希望特征对概率的影响是乘性的。原因之二在于,多类分类问题的目标函数常常选为cross-entropy,即,其中目...

2018-06-01 08:00:21

阅读数 3848

评论数 0

转载 【转】人人都能看懂的LSTM

转自:https://zhuanlan.zhihu.com/p/32085405这是在看了台大李宏毅教授的深度学习视频之后的一点总结和感想。看完介绍的第一部分RNN尤其LSTM的介绍之后,整个人醍醐灌顶。本篇博客就是对视频的一些记录加上了一些个人的思考。0. 从RNN说起循环神经网络(Recurr...

2018-05-29 10:31:45

阅读数 744

评论数 2

转载 【转】结构递归神经网络: 时空领域图像中的深度学习--CVPR2016最佳论文详解

转自:https://blog.csdn.net/tsb831211/article/details/52132910摘要虽然相当适合用来进行序列建模,但深度递归神经网络体系结构缺乏直观的高阶时空架构。计算机视觉领域的许多问题都固有存在高阶架构,所以我们思考从这方面进行提高。在解决现实世界中的高阶...

2018-05-22 15:17:29

阅读数 1049

评论数 0

转载 【转】RNN的神奇之处(The Unreasonable Effectiveness of Recurrent Neural Networks)

转自:https://blog.csdn.net/menc15/article/details/78775010本文译自http://karpathy.github.io/2015/05/21/rnn-effectiveness/。结合个人背景知识,忠于原文翻译,如有不明欢迎讨论。 以下正文。RN...

2018-05-22 15:02:43

阅读数 196

评论数 0

转载 【转】深度 | 一文介绍3篇无需Proposal的实例分割论文

转自:http://www.sohu.com/a/228409487_129720 本文解析了实例分割领域中的三篇论文,它们不同于主流的基于 proposal 和 Faster-RCNN 的方法,比如 Mask R-CNN、MaskLab 以及最新的 PANet,后者在多个数据集(CitySca...

2018-04-27 17:45:17

阅读数 935

评论数 0

原创 原创mask-rrc算法调试流程记录

调试效果变迁过程大致如下:读入方式不同,效果不同:

2018-04-24 08:20:42

阅读数 268

评论数 1

转载 【转】专栏 | Momenta详解ImageNet 2017夺冠架构SENet

转自:http://www.sohu.com/a/161633191_465975 本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏。除此之外,Momenta 还受邀在 CVPR 2017 的...

2018-03-31 10:43:59

阅读数 707

评论数 0

原创 【原】Context Encoding for Semantic Segmentation

这篇文章提出一种与类别预测相关的网络结构,使得在一定程度上降低了分割任务的难度,同时提高了小物体的分割精度。提出上下文语义编码模块与类别预测模块,在某种程度上解决或减轻了分割问题中类间样本不均衡的问题,而这类问题在以像素为度量的损失函数中是非常常见的。在本文中,我们通过引入上下文编码模块来探索全局...

2018-03-31 09:33:18

阅读数 2770

评论数 2

转载 【转】SSD的caffe源码解读 -- 数据增强

转自:https://blog.csdn.net/daniaokuye/article/details/78565817 SSD 的数据增强对ssd网络识别小物体效果明显(原文Fig6),而且他使用的方法有点特别,所以在此解析一下他的源码。python...

2018-03-30 19:28:20

阅读数 733

评论数 0

原创 PANET

PANET主要有如下四点贡献:(1)从底到上的通道连接加强:对大尺度的实例分割有较好的增强效果证明了浅层特征的有用(2)自适应的特征池化为每一个proposal在各个特征层上面抽取特征,然后将他们融合在以前,这一过程被称为自适应池化。这里使用max融合。不同层的特征对最终的精确预测都是有帮助的。有...

2018-03-14 09:56:54

阅读数 1840

评论数 0

转载 【转】DenseBox

转自:http://blog.csdn.net/app_12062011/article/details/77941343DenseBox: Unifying Landmark Localization with End to End Object Detectionarxiv: http://a...

2018-03-04 18:24:02

阅读数 763

评论数 0

转载 【转】FAIR何恺明团队推出全景分割,开辟图像分割新方向

转自:https://www.jqr.com/news/009492在计算机视觉发展的早期,人们主要关注图像中的人、动物或工具等明显对象(things)。之后,Adelson提出要训练系统识别其他物体的能力,如天空、造地、道路等没有固定形状的事物(stuff)。直到现在,仍然没有一种方法能完美地区...

2018-02-28 21:13:52

阅读数 2351

评论数 0

转载 【转】论文阅读理解 - Panoptic Segmentation 全景分割

转自:http://blog.csdn.net/zziahgf/article/details/79063398论文阅读理解 - Panoptic Segmentation 全景分割[Paper] 摘要 新的任务场景 —— 全景分割 Panoptic Segmentation: 统一...

2018-02-27 20:07:42

阅读数 618

评论数 0

转载 【转】Facebook人工智能实验室提出「全景分割」,实现实例分割和语义分割的统一

转自:http://www.sohu.com/a/215073729_297710 原文来源:arxiv 作者:Alexander Kirillov、Kaiming He1、Ross Girshick、Carsten Rother、Piotr Dollar 「雷克世界」编译:嗯~阿童木呀、KABU...

2018-02-27 20:05:25

阅读数 245

评论数 0

转载 【转】专栏 | 后RCNN时代的物体检测及实例分割进展

转自:http://www.sohu.com/a/219275536_129720机器之心专栏 作者:huichan chen 物体检测是计算机视觉的重要任务之一,从最开始的 Viola-Jones 2001 的人脸检测开始,到 Ross 的 Deformable Part Model(DPM...

2018-02-27 19:39:44

阅读数 1143

评论数 0

转载 【转】caffe源码学习:softmaxWithLoss前向计算

转自:http://blog.csdn.net/liyaohhh/article/details/52115638caffe源码学习:softmaxWithLoss    在caffe中softmaxwithLoss是由两部分组成,softmax+Loss组成,其实主要就是为了caffe框架的可扩...

2018-02-27 14:39:33

阅读数 245

评论数 0

转载 【转】caffe中backward过程总结

转自:http://blog.csdn.net/buyi_shizi/article/details/51512848backward是利用代价函数求取关于网络中每个参数梯度的过程,为后面更新网络参数做准备。求取梯度的过程也是一个矩阵运算的过程,后面会有详细介绍,本身求取梯度的过程并不是很复杂,而...

2018-02-27 11:06:57

阅读数 215

评论数 0

原创 2018 Workshop on Autonomous Driving (WAD)----自动驾驶中视觉感知的比赛

自动驾驶中视觉感知的比赛目的:主要帮助理解视觉算法在自动驾驶中解决环境感知问题上的研究现状这里不仅仅是视觉算法在自动驾驶中的应用,还定义了下面一系列现实中的问题来鼓励新算法与流程的提出:(1) Drivable Area Segmentation(2) Road Object Detection(...

2018-02-23 16:14:27

阅读数 549

评论数 0

转载 【转】论文阅读:《RMPE: Regional Multi-Person Pose Estimation》ICCV 2017

述论文地址:https://arxiv.org/abs/1612.00137v3 项目主页:RMPE: Regional Multi-person Pose Estimation这篇论文是上海交大和腾讯优图的论文,被 ICCV 2017接收。它对于多人姿态估计的方法采用传统的自顶向下的方法,即先检...

2018-02-09 16:44:55

阅读数 270

评论数 0

转载 【转】Caffe2 - Detectron 安装

转自:http://blog.csdn.net/zziahgf/article/details/79141879 Detectron 安装 Detectron 项目地址 基于 Caffe2. Detectron 项目: Feature Pyramid Networks for...

2018-01-30 14:53:21

阅读数 1765

评论数 0

转载 【转】Caffe2 - Detectron 初步使用

转自:http://blog.csdn.net/zziahgf/article/details/79142978 Detectron 初步使用 Detectron 安装. Detectron 提供了基于 COCO Dataset 的推断和训练使用说明 - Using Detect...

2018-01-30 14:38:55

阅读数 5471

评论数 2

转载 【转】Caffe2 - Detectron 图片测试结果

转自:http://blog.csdn.net/zziahgf/article/details/79148668 Detectron 图片测试结果 随机找的图片进行测试,结果很惊喜,很赞!!! 1. Box 与 Mask python2 tools/infer_simple.py ...

2018-01-30 14:35:23

阅读数 1114

评论数 2

转载 【转】【Caffe实践】损失函数解析

转自:http://blog.csdn.net/chenriwei2/article/details/45291739 Caffe中的损失函数解析 导言 在有监督的机器学习中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function)。 在Caffe中,目前已经...

2018-01-20 21:55:53

阅读数 278

评论数 0

转载 【转】何恺明团队提出Focal Loss,目标检测精度打破现有记录

转自:http://www.win7999.com/news/142051630.html 翻译|AI科技大本营(rgznai100) 参与 | 周翔,尚岩奇 他可谓神童。 2009年,在 IEEE 举办的 CVPR 大会上,还在微软亚研院(MSRA)实习的何恺明的第一篇论文“Sing...

2018-01-14 16:13:45

阅读数 1426

评论数 0

转载 【转】视觉分类任务中处理不平衡问题的loss比较

转自:http://blog.csdn.net/weixin_35653315/article/details/78327408 问题介绍 在计算机视觉(CV)任务里常常会碰到类别不平衡的问题, 例如: 1. 图片分类任务,有的类别图片多,有的类别图片少 2. 检测任务。现在的...

2018-01-14 15:59:36

阅读数 539

评论数 0

转载 【转】何恺明大神的「Focal Loss」,如何更好地理解?

转自:http://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/78920998 作者丨苏剑林 单位丨广州火焰信息科技有限公司 研究方向丨NLP,神经网络 个人主页丨kexue.fm 前言 今...

2018-01-14 09:23:58

阅读数 4198

评论数 3

转载 【转】论文阅读笔记-Segmentation-Aware Convolutional Networks Using Local Attention Masks

转自:http://blog.csdn.net/u012494820/article/details/78944806 发表于ICCV2017的论文Segmentation-Aware Convolutional Networks Using Local Attention Masks用se...

2018-01-11 09:56:15

阅读数 487

评论数 0

转载 【转】Deep MANTA论文阅读笔记

转自:https://zhuanlan.zhihu.com/p/25996617 (注:阅读笔记有很多自己的主观判断和解释,会有错误与误解之处,也在持续修改中,希望大家能够共同讨论进步,加深理解。) 一、研究背景及思路: 在2D图像物体检测任务中,RCNN、Fast RCNN、Fas...

2018-01-11 09:36:02

阅读数 560

评论数 0

提示
确定要删除当前文章?
取消 删除