RAG理论:ES混合搜索BM25+kNN(cosine)以及归一化

接前一篇:RAG实践:ES混合搜索BM25+kNN(cosine)

https://blog.csdn.net/Xin_101/article/details/140230948

本文主要讲解混合搜索相关理论以及计算推导过程,
包括BM25、kNN以及ES中使用混合搜索分数计算过程。
详细讲解:
(1)ES中如何通过BM25计算关键词搜索分数;
(2)kNN如何通过consine计算语义/向量搜索最终分数,不是直接使用consine距离;
(3)混合搜索最终得分是如何计算的,如何进行归一化优化。

Note:提前声明
下面这张是使用ik分词器进行计算的,为了好截图,后文讲解则是使用默认分词器,
不影响过程分析。

在这里插入图片描述

4 理论

4.1 BM25

BM25(Best Matching 25)匹配算法用于文本检索,其中,25,查阅相关网络资源说是第25次迭代的算法,BM25基于TF-IDF,并进行了改进,引入了可调整参数k1和b。
k1:为饱和函数,防止某额词在文档中出现次数过多导致权重过大;
b:为文档长度因子,使文档长度堆权重的影响不是线性的,更好地适应不同长度的文档。
这也是BM25优点以及缺点的来源:

  • 优点
    (1)k1和b,考虑文档长度,可以有效避免文档长度带来的影响;
    (2)根据不同领域的数据,可以调整k1和b,获取更好的搜索效果,适应不同领域的数据。
  • 缺点
    (1)需要高质量的数据;
    (2)参数k1和b直接影响检索效果,需要不断优化调整,以适应具体的场景。

B M 25 ( Q , D ) = ∑ i = 1 n I D F ( q i ) ⋅ f ( q i , D ) ⋅ ( k 1 + 1 ) f ( q i , D ) ⋅ k 1 ⋅ ( 1 − b + b ⋅ ∣ D ∣ a v g d l ) BM25(Q, D)=\sum_{i=1}^{n}IDF(q_{i})·\frac{f(q_{i}, D)·(k_{1}+1)}{f(q_{i}, D)·k_{1}·(1-b+b·\frac{|D|}{avgdl})} BM25(Q,D)=i=1nIDF(qi)f(qi,D)k1(1b+bavgdlD)f(qi,D)(k1+1)
其中:
T F ( q i ) = f ( q i , D ) ⋅ ( k 1 + 1 ) f ( q i , D ) ⋅ k 1 ⋅ ( 1 − b + b ⋅ ∣ D ∣ a v g d l ) TF(q_{i})=\frac{f(q_{i}, D)·(k_{1}+1)}{f(q_{i}, D)·k_{1}·(1-b+b·\frac{|D|}{avgdl})} TF(qi)

  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天然玩家

坚持才能做到极致

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值