TensorFlow1.x
Tensorflow1.x开发记录
天然玩家
请大家不要再订阅了!!!如遇到专栏里可以解决您问题的文章,您可以私信我。为了保护之前订阅用户的权益,专栏内容依旧保留,但是不会再更新内容了。
展开
-
(二)Tensorflow搭建卷积神经网络实现MNIST手写字体识别及预测
1 搭建卷积神经网络1.0 网络结构图1.0 卷积网络结构 1.2 网络分析序号网络层描述1卷积层一张原始图像(28, 28, 1),batch=1,经过卷积处理,得到图像特征(28, 28, 32)2下采样即池化层,最大池化后图像特征(14, 14, 32)3卷积层将池化特征(14, 14, 32)卷积处理后,得到图像特征(14, 14, ...原创 2019-06-01 19:17:52 · 6788 阅读 · 2 评论 -
Tensorflow训练模型越来越慢
1 解决方案【方案一】载入模型结构放在全局,即tensorflow会话外层。'''载入模型结构:最关键的一步'''saver = tf.train.Saver()'''建立会话'''with tf.Session() as sess: for i in range(STEPS): '''开始训练''' _, loss_1, acc, summary = sess.run(...原创 2019-05-15 13:27:16 · 10351 阅读 · 4 评论 -
车牌识别tensorflow源码
1 生成车牌数据2 搭建神经网络3 训练神经网络4 预测原创 2019-05-12 15:09:57 · 7423 阅读 · 14 评论 -
(一)Tensorflow搭建普通神经网络实现MNIST手写字体识别及预测
2 搭建神经网络3 训练及测试3.1 训练及保存模型3.2 可视化神经网络4 载入模型及预测原创 2019-04-27 16:01:16 · 6944 阅读 · 2 评论 -
MNIST手写字体数据集解析
1 MNIST数据集1.1 数据获取1.2 数据集分析2 搭建神经网络3 训练及测试3.1 训练及保存模型3.2 可视化神经网络4 载入模型及预测5 总结[参考文献][][]...原创 2019-04-18 18:06:28 · 4718 阅读 · 0 评论 -
(二)TFRecord数据处理
1 多线程读取数据2 数据分组batch3 数据洗牌shuffle总结(1) 对数据分组(batch)可提高模型训练效率,即把大量数据进行分组,每次训练读入组内数据;(2) 多线程处理提高数据读取速度,可实现并行计算;(3) 数据洗牌消除数据顺序带来的偏差;[参考文献][1][2][3][4]...原创 2019-04-05 19:59:49 · 378 阅读 · 0 评论 -
(一)Tensorflow图像数据转化TFRecord数据格式
1 TFRecord数据格式2 数据转化TFRecord3 读取TFRecord总结(1) 图像矩阵数据有两种取值:[0,1]float类型,[0,255]int类型,Tensorflow对图像处理(包括剪裁,变换尺寸等操作)需要将图像转换为float格式;(2) 图像数据保存为TFRecord格式时,需要将图像数据调整为int类型,否则保存的图像尺寸会扩大一倍,如32×3232 \ti...原创 2019-04-05 14:24:20 · 1396 阅读 · 0 评论 -
Tensorflow训练神经网络保存*.pb模型及载入*.pb模型
1 神经网络结构1.0 保存*.pb模型import tensorflow as tffrom tensorflow.python.framework import graph_utilfrom tensorflow.python.platform import gfileimport numpy as npimport osimport matplotlib.pyplot as ...原创 2019-03-23 11:47:46 · 9256 阅读 · 8 评论 -
Tensorflow命名空间及变量详细解析(三)
1 Tensorflow命名空间及变量variable_scope,新建变量时定义节点(操作)的上下文管理器.解析:新建变量时的管理器,因此对Variable和get_variable均有效,因为Variable是新建变量,get_variable是新建或使用定义的变量,都是"新建"的过程.name_scope定义Python节点(操作)时的上下文管理器,对get_variable无效,...翻译 2019-03-16 12:33:06 · 1141 阅读 · 0 评论 -
Tensorflow基础知识:模型保存与载入深度解析(二)
1 模型保存2 模型载入2.1 重构图结构载入2.2 直接读取图结构载入[参考文献][][][]翻译 2019-02-21 18:06:34 · 6263 阅读 · 0 评论 -
Tensorflow基础知识:图、张量、会话和计算设备分配解析(一)
1 图2 张量3 会话[参考文献][][][]翻译 2019-02-21 11:22:50 · 6371 阅读 · 0 评论 -
Tensorflow线程分析
import tensorflow as tf1 tensorflow加速数据读取训练模型往往需要处理大量数据,数据的读取是训练的第一步,因此数据的读取速度直接影响训练速度.虽然每次读取的数据是在内存中处理,处理速度很快,但是提取数据的速度会影响数据的输送,因此Tensorflow为加快数据提取速度,开启了线程+队列处理模式,以提高数据提取速度.处理函数:tf.train.start_q...原创 2019-02-01 15:39:16 · 1011 阅读 · 0 评论 -
(二)VGGNet训练CIFAR10数据集之数据预处理
代码分享:cifar10_input.py# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in complianc...翻译 2019-01-30 19:14:55 · 3121 阅读 · 0 评论 -
(三)基于Tensorflow设计VGGNet网络训练CIFAR-10图像分类
1 CIFAR-10数据集1.0 数据集分类CIFAR-10数据集的图像属性:序号参数描述1width242height243channels3共分了十类物品,如下表:序号种类源数据1airplane2automobile3bird4cat5deer6dog7frog8horse9ship10truck1.2 获...原创 2019-01-31 09:01:00 · 8314 阅读 · 0 评论 -
(一)VGGNet卷积神经网络简介及Tensorflow搭建可视化网络
1 小序2 模型ConvNet Configuration层数分类AA-LRNBCDE网络层数11 weight layers11 weight layers13 weight layers16 weight layers16 weight layers16 weight layers输入层input(224x224 RGB image)...原创 2019-01-30 13:48:13 · 9439 阅读 · 0 评论 -
(二)神经网络之Tensorflow函数解析
环境 每篇10个函数 Tensorflow1.12.0 Ubuntu18.04 numpy1.15.41 agrmax(input, axis=None, name=None, dimension=None)功能:输出数据最大值的行或列的下标.序号参数描述1input输入Tensor2axis0表示按列取最大值下标,1表示按行取最大值下标...翻译 2018-12-21 15:01:44 · 367 阅读 · 0 评论 -
Tesorflow问题总结
写在前面.import tensorflow as tf1 tf.argmax越界描述import tensorflow as tfy = tf.argmax(y_, 1)问题InvalidArgumentError (see above for traceback): Expected dimension in the range [-1, 1), but got 1...原创 2018-12-21 13:56:33 · 1398 阅读 · 2 评论 -
(一)卷积神经网络Tensorflow函数基础篇
环境 Tensorflow Ubuntu18.04 Python3# 设置tensorflowimport tensorflow as tf1 初始化函数参数列表:序号函数参数描述1tf.constant_initializervalue,变量类型为scalar,list,tuple或n维numpy array初始的变量全设定为value将变量初...翻译 2018-12-19 20:06:11 · 242 阅读 · 0 评论 -
(四)Tensorflow神经网络可视化之tensorboard Graph
1 TensorboardTensorboard专用于展示Tensorflow图的结构及绘制计算结果图像.帮助理解Tensorflow的工作原理,降低学习难度,总之,好工具.2 基本用法2.1 直接绘图Demoimport tensorflow as tfLOG_DIR = "./logs/addlog"v1 = tf.constant([125.0], shape=[1], n...翻译 2018-12-15 17:10:30 · 6698 阅读 · 0 评论 -
Tensorflow选择GPU&CPU计算与训练==1
1 默认模式1.0 默认CPU环境 Ubuntu16.04 python2.7 Tensorflow1.12.0源码Demov1 = tf.constant([125.0], shape=[1], name='v1')v2 = tf.constant([125.0], shape=[1], name='v2')result = v1 + v2# 输出使用设备的信息True...原创 2018-12-14 19:37:43 · 970 阅读 · 0 评论 -
Tensorflow搭载GPU与CPU计算与训练==2
基础:Tensorflow选择GPU&CPU计算与训练==11 默认模式1.0 默认CPU结果:计算结果CPU calculator result is : [250.]CPU calculator time consuming is: 0.0006909370422361.2 默认GPU结果:计算结果GPU calculator result is : [250...原创 2018-12-14 20:01:51 · 537 阅读 · 0 评论 -
GPU之CUDA&cuDNN&Tensorflow版本匹配
1 小序2 查看版本2.1 查看CUDA版本查询cat /usr/local/cuda/version.txt结果CUDA Version 8.0.61CUDA Patch Version 8.0.61.22.2 cuDNN版本查看cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2结果...翻译 2018-12-14 15:42:19 · 2882 阅读 · 0 评论 -
(二)Tensorflow神经网络保存模型(持久化)
1 Tensorflow搭建神经网络详见:Tensorflow搭建神经网络2 持久化模型2.1 小序Tensorflow训练模型过程中,模型参数只在训练过程中更新及保存,训练完成自动退出,模型未保存,这导致每次测试数据都需要重新训练一次模型,极为耗时且耽误生产,为此Tensorflow提供了模型的持久化接口功能,开发人员在训练好模型后,直接保存,后续的模型训练或迁移学习都可以接着保存的模型...翻译 2018-12-13 10:05:26 · 922 阅读 · 0 评论 -
(三)Tensorflow神经网络之模型载入及迁移学习
1 载入Tensorflow模型import tensorflow as tf import numpy as np import matplotlib.pyplot as pltx_data = np.linspace(-1, 1, 250, dtype=np.float32)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_da...原创 2018-12-12 20:00:01 · 1148 阅读 · 2 评论 -
(一)Tensorflow搭建神经网络:曲线拟合
1 源码2 效果3 解析4 总结原创 2018-11-24 17:40:16 · 1742 阅读 · 0 评论 -
(一)Tensorflow函数解析:变量及会话
tf.random_normaltf.truncate_normal翻译 2018-10-11 23:38:51 · 340 阅读 · 0 评论 -
Tensorflow图像预处理
本文介绍Tensorflow处理图像的函数及其使用。环境#-*-coding:utf-8-*-import matplotlib.pyplot as plt import tensorflow as tf #线程from threading import Thread读取图片#读取图像原始数据image_raw_data = tf.gfile.FastGFile("./...原创 2018-10-05 20:45:35 · 894 阅读 · 0 评论 -
(三)Tensorflow神经网络函数:加和矩阵内积
1 简介2 功能翻译 2018-09-26 19:34:25 · 846 阅读 · 0 评论 -
(零)Tensorflow函数解析
神经网络–tensorflow函数解析【函数】tf.reduce.mean() 根据给出的axis在input_tensor上求平均值。除非keep_dims为真,axis中的每个的张量秩会减少1。如果keep_dims为真,求平均值的维度的长度都会保持为1.如果不设置axis,所有维度上的元素都会被求平均值,并且只会返回一个只有一个元素的张量。tf.reduce_mean(i...翻译 2018-09-04 14:33:46 · 460 阅读 · 0 评论