深度学习在绿色环保行业汇总的应用研究【课程设计】

深度学习在绿色环保行业汇总的应用研究

今天分享几个课程设计,这是第二个。

摘要:基于图像处理的方法可以对垃圾图像进行分类处理,要求是原始数据必须有标记,通过收集具有标记的垃圾分类,可以满足图像分类算法对数据的要求。通过收集相关数据,并将这些数据利用降维的方式生成了新的图像数据,新生成的图像数据的维度为128*128,既可以满足算力较低的硬件环境下进行训练的需求,又可以满足系统的训练质量。在经过对神经网络调参,并进行多次实验,最终训练出来了分类准确率达到93%以上的模型,为以后的垃圾分类使用产品落地奠定了基础。

关键词:绿色环保;垃圾分类;图像识别;垃圾识别;深度学习

课程设计下载

下载课设

一、前言

随着城市化进程的快速推进,我国城市化率在近年间得到显著提升,城市人口越来越多,为我国经济发展和现代化建设起到了积极的促进作用。然而,城市化进程推进的同时也导致了许多严重的环境问题,其中城市垃圾的处理就是目前最迫切需要解决的问题之一。众所周知,在城市日常生活中会产生大量的生活垃圾,无序混乱的垃圾处理方法,不但会加重城市对环境的污染,甚至会对城市居民的健康产生不可忽视的影响,有科学家经过研究发现长期经受生活垃圾污染的人类血液中存在少量的塑料颗粒,这种不可逆转的危害不但会影响当事人的身体健康,甚至会对其后代产生深远的影响。如何将垃圾的存储、转运、处理等环节进行优化,在提升废物利用率的同时产生一定的经济效益,对于城市化进程的进一步推进具有至关重要的影响。而城市垃圾的优化处理离不开高效的垃圾分类技术,有鉴于此,本论文开展基于深度学习的垃圾分类技术研究。
如果可以通过自动化或者信息化的方式对垃圾进行分类,则可以有效提升垃圾分类效率,同时对循环经济和绿色经济产生积极影响。近些年,计算机视觉在分类问题上表现了较好的分类能力,在对垃圾分类的时候,可以采用对含有垃圾的图像进行处理,利用计算机视觉对垃圾进行处理,可以使用计算机图像学和深度学习的相关理论对垃圾进行分类。

二、文献综述

我国垃圾分类的流程目前的状况有如下几种,一是混合收集、集中分拣,这种收集方法是在源头直接收集不进行分类,而在垃圾处理中心集中进行分拣;二是源头分拣,源头分拣是指在垃圾的源头就对垃圾进行分类的处理方法,这种处理方法成本较低,使得后续的环节中都可以按照分门别类的方式有针对的对垃圾进行处理;三是源头粗分类,处理中心细分类的分类方法。
刘婷等[1]针对海上垃圾分类的场景以及分类难的问题,提出基于卷积神经网络的无人船在海面的垃圾分类,使用了基于keras的技术对于海面最常见额4种垃圾进行分类,较之于VGG-16网络,其准确率大幅提升,达到了93%以上,在实践中中充分验证了该算法可行性。陈莎莎等[2]提出了基于神经网络的可回收垃圾的处理方法,基于经典的数据集Image-Net,并基于inception进行了模型训练,在模型训练中为了提升训练的效果,采用了一些技术手段提升了训练的准确性,提出的技术有“参数共享”和“提前终止”等技术,参数共享是在多个模型训练中使用相同的参数的训练方式,而提前终止是采用提前结束训练的方式达到最好的训练效果,以防止进入过拟合的训练态势,经过实践检验,这些方法显著提升了训练效果,可以更好的对垃圾进行分类。孙中元[3]等提出了基于ResNet的一种技术对垃圾进行分类,但是该技术存在一定缺陷,因此有提出了注意力机制加强了算法的训练,注意力机制是指在图像或者文本中,仅有一些数据是更为重要的,而其他数据对整个训练的目标来说没有那么重要,因此可以通过对这些重要的数据赋予更高的权限的方式来提升训练的效率,体现了哲学中的“区分问题的主要矛盾和次要矛盾,以及主要方面和次要方面”的问题,经过算法的调整和整改,显著提升了算法和模型的训练效果。
综上所述,垃圾分类在发达国家中发展较早,也有一些智能方法对垃圾进行分类,在国内各地的策略不尽相同,在信息化方法中,目前已有一些基于机器学习的方法基于垃圾图像进行分类。本文拟基于神经网络的方法对垃圾进行分类。

三、基本概念介绍

我国著名学者周志华在西瓜书中对深度学习的论述是“典型的深度学习就是很深层的神经网络”[13]。周志华和王钰教授(也借此论文悼念王钰教授)在机器学习上建树颇丰,被人们称之为“南周北王”。被从理论上来讲,一个神经网络,如果提升了模型的复杂度,模型的复杂度显然可以更好更精细地拟合数据[13]。但是,如果神经网络的复杂度越来越高,虽然可以更好拟合数据,理论上可以更提升训练效果,但是其对算力的要求也会显著增加,如果算法里无法满足,那么单独增加神经网络的复杂度就没有什么意义,但是随着云计算和大数据时代的到来,可以使用基于云计算基础设施的硬件来训练模型,也就是可以通过将数据传送到云端,然后借助云端的丰富资源进行模型训练,这使得模型的复杂度提升有了意义,可以落地复杂度较高的模型训练。神经网络中可以有两种方式提升模型的复杂度,一是增加某一个层的节点数,如果节点数增加了,那么网络的复杂度肯定是提升了,比如在图像图例中,输入中的节点增加了,一般就代表着图像的像素提升了,这显然增加了图像的精细程度;二是通过增加网络中层数的方式来提升神经网络的复杂度,通过增加神经网络中的隐层数,就可以增加网络的复杂度,可以更加精确进行模型训练和模型拟合。

四、实验过程以及结果

模型训练是系统的核心功能,模型训练的任务是寻找合适的网络层数和每层的节点数,并且对网络进行训练获得模型参数。在本文中选择不同的隐层和节点的时候,取得的实验结构如下表1所示,实验结果表明当选用4层隐层的时候,取得了较好的训练效果和拟合效果。
表1 实验过程

隐层数各层节点数准确率
2800、40067.31
3800、400、20076.35
4800、600、400、20083.26
41000、500、256、12893.22
4400、600、800、40084.32
51000、800、600、400、20090.3
61000、800、600、500、400、30083.4

训练过程如下图1所示。
在这里插入图片描述

图1 训练过程展示
模型评估的方法较多,但是一般采用的都是指标有准确率、精确率、召回率等指标,和这些指标相关的一些基本信息是数据本身的真伪和训练结果的真伪的比较。在众多的模型评估指标中,准确率是使用广泛的一个指标,如式1所示。
在这里插入图片描述

             式1

本模型评估的最终的准确率是93.22%,可以满足应用落地的实际需求。
在实验中训练了200epoch,下图记录了连接着的10此epoch的acc均值,将每一个epoch得到的训练结构都是用测试集来验证结果。整个实验过程如图2所示。
在这里插入图片描述

图2 训练过程acc变化
实验中使用的数据超过2万条,每种类型的数据有1万条左右,这说明数据量足够大,数据的预测准确率达到了90%以上,说明具有一定的应用价值,可以继续推广使用算法,落地工业上的应用产品。

参考文献

[1]刘婷, 周柏均, 赵永生,等. 基于卷积神经网络的无人船海面垃圾分类算法[J]. 船舶工程, 2021, 43(S01):6.
[2]陈莎莎, 杜庆东. 基于深度学习的可回收垃圾分类算法[J]. 现代工业经济和信息化, 2021, 11(1):3.
[3]孙中元, 杨军, 药泽一. 基于ResNeXt和注意力机制的垃圾分类算法[J]. 2020.
[4]陶威远, 姜太平, 郑一然. 基于Faster R-CNN算法的垃圾分类识别系统[J]. 网络安全技术与应用, 2020(3):3.
[5]张方超, 董振, 张栋,等. 基于图像视觉的垃圾分类机器人识别控制系统算法设计[J]. 电子测量技术, 2019, 42(20):5.
[6]王朔, 郭凤娜. 基于YOLOv3与ResNet50算法的智能垃圾分类系统[J]. 传感器世界, 2021, 27(9):6.
[7]潘冯超, 刘勤明, 史展维,等. 基于K-Means算法的小区垃圾分类站选址问题研究[J]. 软件导刊, 2020, 19(10):4.
[8]董子源. 基于深度学习的垃圾分类系统设计与实现[D]. 中国科学院大学(中国科学院沈阳计算技术研究所), 2020.
[9]王晨頔. 基于分类的北京城市生活垃圾清运车辆调度与优化研究[D]. 北京交通大学, 2019.
[10]赵今越, 马良, 刘勇. 垃圾分类收运路径问题的新型混合蚁群算法求解[J]. 计算机应用研究, 2021.
[11]王小燕, 谢文昊, 杨艺芳,等. 基于深度学习的垃圾分类检测方法[J]. 现代电子技术, 2021, 44(21):4.
[12]高明, 陈玉涵, 张泽慧,等. 基于新型空间注意力机制和迁移学习的垃圾图像分类算法[J]. 系统工程理论与实践, 2021, 41(2):15.
[13]周志华等. 机器学习[M]. 清华大学出版社, 2016.
[14]Qin J , Wang C , Ran X , et al. A robust framework combined saliency detection and image recognition for garbage classification - ScienceDirect[J]. 2021.
[15]Chen Y , Han W , Jin J , et al. Clean Our City: An Automatic Urban Garbage Classification Algorithm Using Computer Vision and Transfer Learning Technologies[J]. Journal of Physics: Conference Series, 2021, 1994(1):012022 (11pp).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无忧必过

给我的奖赏能给您带来好运,顺祝

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值