描述
在提瓦特大陆,蒙德城的璃月商人钟离计划在风神山脉到璃月港之间的一条古老商路上设立N(2≤N≤100,000)个供奉点,这些供奉点的坐标为x0,...,xN-1(0≤xi≤1,000,000,000, 均为整数且各不相同)。为了确保旅行者们在旅途中的安全和供奉的祈愿能够顺利传达给七神,钟离决定在这些供奉点中选取C(2≤C≤N)个地点,每个供奉点安置一个宝匣。考虑到宝匣中存放的是珍贵的祈愿品,为了避免它们被恶意破坏或一次性被发现,钟离希望这些宝匣之间的距离尽可能地远。
请问,钟离应如何选择供奉点来安置这些宝匣,以使任意两个宝匣之间的最小距离尽可能地大?这个最大的最小距离又是多少呢?
输入
第1行: 两个整数 N,C,由空格分开。
第2..N + 1行:第i + 1行包含供奉点的坐标xi
5 3
1
2
8
4
9
输出
3
一个整数:最大的最小距离。
代码实现:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
bool canPlaceBoxes(const vector<int>& v,int C,int x)
{//判断最短距离为x是否可以放下C个宝匣
int lastPos=v[0];
int cnt=1;
for(int i=0;i<v.size();i++)
{
if(v[i]-lastPos>=x)
{
cnt++;
lastPos=v[i];
if(cnt>=C)
{
return true;
}
}
}
return false;
}
int maxMinDist(const vector<int>& v,int C)
{
int l=0;
int r=v.back()-v.front();
int res=-1;
while(l<=r)
{//贪心算法
int mid=l+r>>1;
if(canPlaceBoxes(v,C,mid))
{
res=mid;
l=mid+1;
}
else
{
r=mid-1;
}
}
return res;
}
int main()
{
int N,C;
cin>>N>>C;
vector<int> v(N);
for(int i=0;i<N;i++)
{
cin>>v[i];
}
sort(v.begin(),v.end());
int result=maxMinDist(v,C);
cout<<result<<endl;
return 0;
}