单调性约束与反单调性约束的区别 monotonicity and anti-monotonicity constraint

▚ 01 Monotone Constraints 单调性约束


1.1 Definitions 定义

Monotone Constraints | SpringerLink

A constraint C is monotone if and only if for all itemsets S and S′:
if S ⊇ S′ and S violates C, then S′ violates C.

1.2 Key Points 要点

   Monotone constraints possess the following property. If an itemset S violates a monotone constraint C, then any of its subsets also violates C. Equivalently, all supersets of an itemset satisfying a monotone constraint C also satisfy C (i.e., C is upward closed). By exploiting this property, monotone constraints can be used for reducing computation in frequent itemset mining with constraints. As frequent itemset mining with constraints aims to find frequent itemsets that satisfy the constraints, if an itemset S satisfies a monotone constraint C, no further constraint checking needs to be applied to any superset of S because all supersets of S are guaranteed to satisfy C. Examples of monotone constraints include min(S. Price) ≤ $30, which expresses that the minimum price of all items in an itemset S is at most $30. Note that, if the minimum price of all items in S is at most $30, adding more items to S would not increase its minimum price (i.e., supersets of S would also satisfy such a monotone constraint).

在这里插入图片描述


▚ 02 Anti-monotone Constraints 反单调性约束


2.1 Definitions 定义

Anti-monotone Constraints | SpringerLink

A constraint C is anti-monotone if and only if for all itemsets S and S′:
if S ⊇ S′and S satisfies C, then S′ satisfies C.

2.2 Key Points 要点

   Anti-monotone constraints possess the following nice property. If an itemset S satisfies an anti-monotone constraint C, then all of its subsets also satisfy C (i.e., C is downward closed). Equivalently, any superset of an itemset violating an anti-monotone constraint C also violates C. By exploiting this property, anti-monotone constraints can be used for pruning in frequent itemset mining with constraints. As frequent itemset mining with constraints aims to find itemsets that are frequent and satisfy the constraints, if an itemset violates an anti-monotone constraint C, all its supersets (which would also violate C) can be pruned away and their frequencies do not need to be counted. Examples of anti-monotone constraints include min(S. Price) ≥ $20 (which expresses that the minimum price of all items in an itemset S is at least $20) and the usual frequency constraint support(S)  ≥ minsup (i.e., frequency(S)  ≥ minsup). For the former, if the minimum price of all items in S is less than $20, adding more items to S would not increase its minimum price (i.e., supersets of S would not satisfy such an anti-monotone constraint). For the latter, it is widely used in frequent itemset mining, with or without constraints. It states that (i) all subsets of a frequent itemset are frequent and (ii) any superset of an infrequent itemset is also infrequent. This is also known as the Apriori property.

在这里插入图片描述


▚ 03 Explanation 解释


假设:我们将S violates C作为事件A,S′ violates C作为事件B;则 S satisfies C为事件not A,then S′ satisfies C为事件not B.

此时,根据Monotone Constraints定义知(A → B),也即(not B → not A);
根据Anti-monotonicity Constraints定义知(not A → not B),也即(B → A);

因为(A → B)并不一定意味着(B → A),所以这两者 (Monotone Constraints & Anti-monotonicity Constraints) 的声明是不同的。

在这里插入图片描述


▚ 04 Example 示例


For an example. Consider-  
C1 = Sum of elements is greater than 5  
C2 = Sum of elements is at most 5  
U(universe) = Set of non-negative real numbers

In case of C1,
If S violates C1, then S’ obviously violates C1 as well (S being a superset of S’)
Eg. S = {1, 2}, S’ = {2}
Hence C1 is monotonic.

In case of C2,
If S satisfies C2, then S’ obviously satisfies C2 as well (S being a superset of S’)
Eg. S = {1, 2}, S’ = {2}
Hence C2 is anti-monotonic.

在这里插入图片描述


▚ 05 数据挖掘的约束限制


Constraint-Based Mining — A General Picture
在这里插入图片描述

在这里插入图片描述


参考文章


database - What does Antimonotonicity and monotonicity constraint mean? - Code Utility - Code Utility

CS6220: Data Mining Techniques (ucla.edu)

### 回答1: matlab单调性单调性是指函数在一个区间内的变化趋势是否一致,即同向变化。在matlab中,可以使用一些函数来判断函数的单调性,比如diff函数可以求出函数在一个区间内的导数变化趋势,根据导数的正负可以判断函数的单调性。 ### 回答2: MATLAB是一款强大的数学软件,可以用来实现很多数学中的概念和算法。其中一个重要的概念就是单调性单调性,简单来说,就是数列或函数值随着自变量增加而单调递增或递减的性质。单调性在数学中具有很重要的意义,在实际应用中也有很多很重要的作用。 在MATLAB中,判断函数的单调性可以通过一些简单的方法实现。例如,通过使用 diff 函数可以计算函数值的差分序列,根据差分序列的正负可以判断函数的单调性。如果差分序列的所有元素都是正数,则函数单调递增;如果差分序列的所有元素都是负数,则函数单调递减。 此外,在MATLAB中还有一些其他的函数,如 sign、diff 和 gradient 等,旨在帮助用户判断函数的单调性。但需要注意的是,当函数存在极值点时,这些方法可能会失效。 总之,在MATLAB中判断函数的单调性是一个很方便的任务,可以通过一些简单的方法实现。但在实际应用中,需要对函数的特点进行分析,选择适合的方法来判断函数的单调性。 ### 回答3: Matlab单调性是指一个函数的单调性,在数学中单调性是指函数在整个定义域内的变化趋势。如果一个函数随着自变量的增加或减少,函数值也相应地增加和减少,则该函数称为单调函数。在Matlab中,我们可以通过判断函数的导数来判断函数的单调性。 对于一个函数f(x),如果它的导数f'(x)>0,则表示函数在该点单调递增;如果f'(x)<0,则表示函数在该点单调递减;如果f'(x)=0,则可能是函数的极值点。因此,我们可以通过Matlab求解一个函数的导数来判断其单调性。 可以使用Matlab的Symbolic Math Toolbox来简化这个过程。例如,对于函数f(x)=x^2,在Matlab中使用Symbolic Math Toolbox可以得到它的导数f'(x)=2x。我们只需要找到导数f'(x)的零点,并在这些点上检查f''(x)的符号来判断极值点的类型。如果f''(x)>0,则该点为函数的极小值点;如果f''(x)<0,则该点为函数的极大值点。 总的来说,Matlab单调性指的是函数在整个定义域内的单调变化趋势。在Matlab中,我们可以计算函数的导数来判断函数的单调性。通过Matlab的Symbolic Math Toolbox,可以简化计算过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值