Anaconda镜像安装tensorflow-gpu1.14及Keras超详细版

一、CUDA和cuDNN的安装及环境配置

https://developer.nvidia.com/cuda-toolkit-archiv
首先从该网页下载tensorflow对应版本的的CUDA,tensorflow1.14可以使用CUDA10.0cuDNN7.6.4下载好后按要求进行安装。
https://developer.nvidia.com/cudnn
然后在这个网站下载cuDNN,解压后依次复制到CUDA的安装路径中,路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

Tensorflow对应的Python、Cuda、cuDNN版本:
Tensorflow对应的Python、Cuda和cuDNN版本
下载安装好后,需要在环境变量中添加路径。
PATH中手动添加:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64

前两个一般安装好CUDA后会自动配置好。(注意:若没有显卡驱动,需要先到英伟达官网下载最新的显卡驱动)

二、安装Anaconda

https://www.anaconda.com/download/
官网下载Anaconda后,按照其他博客安装好。
详细安装链接:Anaconda、Cuda、cuDNN
在开始栏找到Anaconda,打开Anaconda Prompt,进入终端后方便镜像下载。Anaconda开始栏所在位置

0.导入镜像包
设置额外的源,直接从速度快的源进行下载。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/

参考链接:https://blog.csdn.net/feifei3211/article/details/80361227
1.创建Python环境

conda create --name tensorflow-gpu python=3.6  

代表创建一个python3.6的环境,我们把它命名为tensorflow-gpu

2.激活环境

conda activate tensorflow-gpu

激活环境,方便在该环境中安装库

3.安装tensorflow-gpu的1.14版本
首先升级pip,防止出现问题

python -m pip install  -i https://pypi.doubanio.com/simple/ --upgrade pip
python -m pip install  -i https://pypi.doubanio.com/simple/ --upgrade setuptools

然后镜像安装tensorflow-gpu

# pip install -i https://pypi.doubanio.com/simple/ tensorflow-gpu==1.14
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn tensorflow-gpu==1.14

4.训练测试代码
输入

python

进入到python内部,输入以下代码测试tensorflow是否安装成功

import tensorflow as tf
sess = tf.Session()
a = tf.constant(1)
b = tf.constant(2)
print(sess.run(a+b))

退出python返回虚拟环境中

exit()

5.镜像安装Tensorflow对应Keras2.2.5版本

pip install -i https://pypi.doubanio.com/simple/ keras==2.2.5

其他库的安装也可以使用此行代码,只需更改库名即可。
Tensorflow对应的Keras版本:
Tensorflow与Keras版本对应
6.安装其他库

pip install -i https://pypi.doubanio.com/simple/ opencv-python
pip install -i https://pypi.doubanio.com/simple/ pillow
pip install -i https://pypi.doubanio.com/simple/ matplotlib

7.安装Spyder编译器

conda install spyder

如果安装失败,则重新执行此行命令。多次安装均失败,则用记事本打开C:\Users\电脑用户名路径下的.condarc,删掉 - defaults,再重新执行此行代码。

8.所有需要的库安装好后,训练模型

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值