Metal 系列二:GPU Devices

本文深入探讨了Metal框架中GPU Devices的使用,包括获取设备、查询属性、创建命令队列、渲染管线和计算管线等关键步骤。重点介绍了基于图块的延迟渲染技术在A11 GPU上的优化,以及Metal 2带来的性能提升。此外,还涵盖了GPU Family 4的特性,如imageblocks、tile shading和光栅顺序组等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

获取设备默认的GPU设备:

代码:

guard let device = MTLCreateSystemDefaultDevice() else {
    
    fatalError( "Failed to get the system's default Metal device." ) 
}

为了使用Metal framework,首先应该获取GPU设备,app中所有和Metal有联系的对象,都来自获取的GPU设备。并且,只需要获取一次即可。

MTLDevice protocol

它定义了GPU的接口:
1.可以在GPU设备中查询是否对APP的Metal提供特殊功能。
2.使用GPU设备发出所有Metal commend(命令)
3.不要自己实现此协议,相反,要从上文我们介绍的MTLCreateSystemDefaultDevice()方法中获取Device
4.使用MTLCopyAllDevicesWithObserver,可以获取可用的GPU设备
5.有关选择正确的GPU设备的讨论,请查考:Getting the Default GPU

GPU 设备是我们在Metal中做任何操作的首要对象,因此,所有的app中涉及到的Metal对象都是来自运行时获得的MTLDevice实例。
Device被创建,代价十分昂贵,同事也是持久的,大多数被设计为只初始化一次 only once,并且真个生命周期都在重用。
但是,GPU设备创建的对象特定于发布它们的GPU,因此如果您将中间运行切换为使用不同的GPU,那么您也可以从新的GPU设备创建一组新的命令对象。

MTLDevice protocol 摘要:

1.获取设备

https://blog.csdn.net/Xoxo_x/article/details/83627918

2.查询属性

https://blog.csdn.net/Xoxo_x/article/details/83628273

3.查询特性

https://blog.csdn.net/Xoxo_x/article/details/83628273

4.创建命令队列

https://blog.csdn.net/Xoxo_x/article/details/83628589

5.同步命令集合

https://blog.csdn.net/Xoxo_x/article/details/83628589

6.获取 shader 方法

https://blog.csdn.net/Xoxo_x/article/details/83628928

7.创建渲染管线

https://blog.csdn.net/Xoxo_x/article/details/83663080

8.创建计算管道

https://blog.csdn.net/Xoxo_x/article/details/83663080

9.查询内存可用性

https://blog.csdn.net/Xoxo_x/article/details/83663098

10.创建缓冲

https://blog.csdn.net/Xoxo_x/article/details/83663113

11.创建纹理和取样

https://blog.csdn.net/Xoxo_x/article/details/83663135

12.创建参数缓冲区

https://mp.csdn.net/mdeditor/83663190

13.创建间接命令缓冲区

https://mp.csdn.net/mdeditor/83663190

14.创建资源堆和围栏

https://mp.csdn.net/mdeditor/83663190

15.创建深度和模板状态

https://mp.csdn.net/mdeditor/83663190

16.查询可编程样品位置

https://mp.csdn.net/mdeditor/83663190

17.查询光栅订单组支持

https://mp.csdn.net/mdeditor/83663190


了解如何为特定类型的iOS和tvOS设备开发Metal应用程序,如果你想开发Metal的APP最好要熟悉不同CPU的特性。
前文我们提到,MTLDevice 协议的作用:

1.可以在GPU设备中查询是否对APP的Metal提供特殊功能。
2.使用GPU设备发出所有Metal commend(命令)
3.不要自己实现此协议,相反,要从上文我们介绍的MTLCreateSystemDefaultDevice()方法中获取Device
4.使用MTLCopyAllDevicesWithObserver,可以获取可用的GPU设备
5.有关选择正确的GPU设备的讨论,请查考:Getting the Default GPU

下面我们来看一下,不同设备的特性
About GPU Family 4 :
了解A11功能,包括光栅顺序组,平铺着色器和图像块。

概观

GPU系列4描绘了A11芯片及其Apple设计的图形处理器(GPU)架构所支持的新功能和性能增强。

iOS和tvOS设备中的GPU实现了一种称为基于图块的延迟渲染(TBDR)的渲染技术,以优化性能和功效。在传统的立即模式(IM)渲染器中,当三角形被提交给GPU进行处理时,它会立即呈现给设备内存。三角形由光栅化和片段函数阶段处理,即使它们被稍后提交给GPU的其他基元遮挡。

基于平铺的延迟渲染
TBDR对IM架构进行了一些重大更改,在提交了所有基元后处理场景。屏幕被拆分为单独处理的图块。同时处理与图块相交的所有几何图形,并在光栅化和片段着色阶段之前丢弃被遮挡的图像。将磁贴渲染到GPU上的快速本地存储器中,并且仅在渲染完成后才将其写入设备存储器。

TBDR允许顶点和片段阶段异步运行 - 相对于IM提供显着的性能改进。在运行渲染过程的片段阶段时,硬件并行执行未来渲染过程的顶点阶段。顶点阶段通常大量使用固定功能硬件,而片段阶段则使用数学和带宽。完全重叠它们允许设备同时使用GPU上的所有硬件模块。

TBDR使用的磁贴存储器有三个重要特征。首先,着色器核心和瓦片存储器之间的带宽比GPU和设备存储器之间的带宽高许多倍,并且与着色器核心的数量成比例地缩放。其次,磁贴内存的内存访问延迟比访问设备内存的延迟低许多倍。最后,磁贴内存消耗的功率远低于设备内存。

在基于A7到A10的设备上,Metal没有明确描述这种基于图块的架构; 相反,您使用它来提供底层实现的提示。例如,加载和存储操作控制将哪些数据加载到本地存储器以及将哪些数据写入设备存储器。类似地,无记忆缓冲区指定仅在渲染通道期间使用的每像素中间数据; 实际上,这些数据存储在GPU的快速本地存储器中。

A11 GPU上的Metal2

A11中Apple设计的GPU提供了几项显着增强TBDR的功能。这些功能通过其他Metal 2 API提供,使您的应用和游戏能够实现更高水平的性能和功能。

这些功能包括图像块,图块着色,光栅顺序组和图像块样本覆盖控制。A11 GPU上的金属2还可以提高碎片丢弃性能。

从广义上讲,这些功能可以更好地控制内存布局和存储在磁贴中的数据,并提供更细粒度的同步,以便在GPU上保持更多工作。最终结果是,您可以在单个渲染过程中执行比以前更多种类的计算,从而将计算保持在快速本地内存中。

A11上的金属2还简化了诸如次表面散射,与顺序无关的透明度和基于图块的照明算法等技术的实现。

GPU Family 4 Features

关于Imageblocks
了解imageblocks如何允许您在高带宽磁贴内存中定义和操作自定义每像素数据结构。

关于瓷砖底纹
了解在共享本地内存时将渲染和计算操作组合到单个渲染过程中。

关于光栅订单组
了解精确控制访问相同像素坐标的并行片段着色器线程的顺序。

关于增强的MSAA和Imageblock样本覆盖控制
了解如何在切片着色器中访问多重采样跟踪数据,启用自定义MSAA解析算法的开发等。

其他协议方法:

//返回对首选系统默认Metal设备的引用
func MTLCreateSystemDefaultDevice() -> MTLDevice?
Returns a reference to the preferred system default Metal device.
//返回对系统中所有Metal设备的引用数组
func MTLCopyAllDevices() -> [MTLDevice]
Returns an array of references to all Metal devices in the system.
//返回系统中所有Metal设备的引用数组,观察者接收设备通知
func MTLCopyAllDevicesWithObserver(handler: MTLDeviceNotificationHandler) -> (devices: [MTLDevice], observer: NSObject)
Returns an array of references to all Metal devices in the system, with an observer to receive device notifications.
//删除已注册的设备通知观察者
func MTLRemoveDeviceObserver(NSObjectProtocol)
Removes a registered observer of device notifications.


//一个布尔值,指示设备是否配置为无头
var isHeadless: Bool
A Boolean value that indicates whether a device is configured as headless.
Required.
//一个布尔值,指示设备是否为低功耗
var isLowPower: Bool
A Boolean value that indicates whether a device is low-power.

Required.
//一个布尔值,用于确定GPU是否可移动。
var isRemovable: Bool
A Boolean value that determines whether or not a GPU is removable.

Required.
//设备的注册表ID值。
var registryID: UInt64
The registry ID value for the device.

Required.
//设备的名称
var name: String
The name of the device.

Required.

//设备功能集定义特定的平台,硬件和软件配置
enum MTLFeatureSet
The device feature sets that define specific platform, hardware, and software configurations.

//返回一个布尔值,指示设备是否支持特定功能集。
func supportsFeatureSet(MTLFeatureSet) -> Bool
Returns a Boolean value that indicates whether a device supports a particular feature set.

Required.


Metal功能集定义了每个设备的功能可用性,实现限制和像素格式功能:
Table 1

GPU families and their corresponding GPU hardware

GPU family

GPU hardware

iOS GPU family 1:  Apple A7 devices

(iOS GPU family 2、 tvOS GPU family )1  :Apple A8 devices

(iOS GPU family 3、 tvOS GPU family 2 ) Apple A9 devices  Apple A10 devices

iOS GPU family 4  Apple A11 devices

macOS GPU family 1 :

{
   
iMac Pro models

iMac models from 2012 or later

MacBook models from 2015 or later

MacBook Pro models from 2012 or later

MacBook Air models from 2012 or later

Mac mini models from 2012 or later

Mac 
<think>好的,我现在需要处理用户关于Ollama不调用GPU的问题。首先,我要理解用户的问题到底是什么。Ollama是一个本地运行大型语言模型的工具,用户可能在使用过程中发现它没有利用GPU,导致性能问题或者速度慢。接下来,我需要分析可能的原因,并给出逐步的解决方案。 首先,用户可能没有安装GPU驱动或者相关的依赖库。比如NVIDIA的CUDA和cuDNN对深度学习框架来说非常重要。如果这些没有正确安装,Ollama自然无法调用GPU。这时候需要检查驱动安装情况,使用nvidia-smi命令验证。 其次,Ollama的安装可能默认是CPU版本。有些情况下,用户可能通过包管理器或者直接下载的预编译进制文件不支持GPU加速。这时候需要确认安装方式,可能需要从源码编译或者选择支持GPU的版本。 然后,模型本身可能不支持GPU加速。虽然大多数现代框架如PyTorch、TensorFlow支持GPU,但某些特定模型可能在配置中没有启用GPU选项。用户需要检查模型配置文件,是否有GPU相关的设置被禁用。 另外,资源分配问题也可能导致Ollama无法使用GPU。比如显存不足,或者有其他进程占用了GPU资源。这时候需要检查显存使用情况,关闭不必要的程序,或者调整Ollama的资源分配参数。 系统环境变量也是一个可能因素。有时候框架需要特定的环境变量来启用GPU支持,比如CUDA_VISIBLE_DEVICES。用户需要确保这些变量正确设置。 接下来,我需要将这些可能的原因整理成清晰的步骤,帮助用户逐一排查。同时,提供具体的命令和操作示例,比如如何检查GPU状态,如何重新安装支持GPU的Ollama版本,如何配置模型文件等。 最后,还要考虑用户的操作系统差异,比如Linux和Windows在驱动安装和环境变量设置上的不同,给出相应的建议。确保回答结构清晰,步骤明确,用户能够按照指导自行解决问题。</think>以下是关于Ollama不调用GPU的原因分析和逐步解决方案: ### 一、核心原因 1. **硬件/驱动未就绪** - 未安装GPU驱动程序(如NVIDIA显卡需安装CUDA Toolkit) - 缺少GPU加速库(如cuDNN、ROCm) - 硬件不兼容(仅支持NVIDIA/AMD特定型号显卡) 2. **软件配置问题** - 安装的Ollama为CPU-only版本 - 未启用GPU加速标志 - 模型文件未包含GPU支持 3. **资源限制** - 显存不足(常见于大模型运行) - 系统未分配GPU资源 ### 、诊断步骤 1. **验证GPU可用性** ```bash # NVIDIA显卡 nvidia-smi # AMD显卡 rocm-smi ``` 2. **检查Ollama配置** ```bash ollama serve --verbose # 查看启动日志 ``` 3. **确认模型参数** ```bash ollama show <模型名称> --modelfile # 查看模型配置 ``` ### 三、解决方案 #### 方案1:安装GPU支持组件 - **NVIDIA用户** ```bash # 安装CUDA Toolkit sudo apt install nvidia-cuda-toolkit # 验证安装 nvcc --version ``` - **AMD用户** ```bash # 安装ROCm sudo apt install rocm-hip-sdk ``` #### 方案2:安装GPU版本Ollama ```bash # Linux系统示例 curl -fsSL https://ollama.com/install.sh | FORCE_CMAKE=1 CMAKE_ARGS="-DLLAMA_CUBLAS=on" sh ``` #### 方案3:显存优化配置 在Modelfile中添加: ```dockerfile PARAMETER num_gpu 100 # 分配全部显存 PARAMETER numa true # 优化内存分配 ``` #### 方案4:强制启用GPU 启动时指定加速方式: ```bash # NVIDIA OLLAMA_GPU_LAYER=llama OLLAMA_GPU_ARCH=sm_86 ollama serve # AMD HSA_OVERRIDE_GFX_VERSION=10.3.0 OLLAMA_GPU_LAYER=hip ollama serve ``` ### 四、验证GPU加速 运行测试命令: ```bash ollama run llama2 "请生成测试文本" --verbose 2>&1 | grep -i "gpu" ``` 正常应显示类似: ``` ggml_metal_init: allocating ggml_metal_add_buffer: GPU buffer size = 512.00 MB ``` ### 五、常见问题处理 1. **显存不足错误** - 降低并行度:`OLLAMA_NUM_PARALLEL=2` - 量化模型:选择`-7b-q4`等量化版本 2. **多GPU配置** ```bash OLLAMA_GPU_DEVICES=0,1 ollama serve # 指定使用第0、1号GPU ``` 3. **Windows特殊配置** - 需额外安装CUDA DLL: ```powershell winget install NVIDIA.CUDA ``` - 设置环境变量: ```powershell $env:OLLAMA_GPU_LAYER = "cuda" ``` 建议先通过`nvidia-smi`/`rocm-smi`确认GPU状态,再逐步验证各配置层。若问题持续,可运行诊断命令: ```bash ollama diagnose ``` 并将结果提交官方支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值