macOS M1使用TensorFlow GPU加速

本文讲述了如何在PyCharm中使用Python环境TensorFlow2.13.0,并检查是否利用GPU进行加速。作者首先检查物理设备,发现无GPU,然后安装适用于MacOS的MetalPluggableDevice并成功提升到1个GPU可用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人是在pycharm运行代码,安装了tensorflow版本2.13.0

先运行代码查看有没有使用GPU加速:

import tensorflow as tf


# Press the green button in the gutter to run the script.
if __name__ == '__main__':
    physical_devices = tf.config.list_physical_devices('GPU')
    print("Num GPUs:", len(physical_devices))

如果运行结果为0,则没有使用GPU加速训练。

根据官网,安装了适用于 macOS GPU 的Metal PluggableDevice,在pycharm的terminal输入命令:

python3 -m pip install tensorflow-metal

安装成功后,再次运行顶部代码:

 

 

运行结果GPU数量是1,安装成功了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天向上的spookypop

喜欢不吝点桃心,土豪也可赏酒钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值