隐函数的求导

今天上物理课时偶然想到了隐函数求导的严谨证明,那么就记一下吧。


首先,如果我们要对一个隐函数求导,我们首先需要证明这个隐函数连续可微

以及,由于我太菜了,所以本文的隐函数只对于二维的隐函数进行了讨论

对于一个二维隐函数***Implicit Function*** f ( x , y ) f(x,y) f(x,y),若对于此函数上的任意一点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1,y1),都有隐函数上的另一点 B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2) 使得对于任意正数 δ &gt; 0 \delta&gt;0 δ>0 ,都有 ∣ x 1 − x 2 ∣ &lt; δ \vert x_1-x_2 \vert&lt;\delta x1x2<δ ∣ y 1 − y 2 ∣ &lt; δ \vert y_1-y_2 \vert&lt;\delta y1y2<δ,那么我们说这个隐函数 f ( x , y ) f(x,y) f(x,y) 是连续可微的。

——XsJIONG的胡乱定义

那么有了这个定义,我们就可以进入正题了。

推导

我们假设有这样一个函数 f ( x , y ) f(x,y) f(x,y) ,其对应的隐函数为
f ( x , y ) = C f(x,y)=C f(x,y)=C
其中 C C C 为任意常数

那么我们该如何得到它的导数呢?我们先来回顾一下导数的定义:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f&#x27;(x)=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)

f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x f&#x27;(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x} f(x)=Δx0limΔxΔy
那么我们就可以直观地推出隐函数导数的公式
f ′ ( x , y ) = lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 Δ y Δ x f&#x27;(x,y)=\lim_{\Delta x\to0}\lim_{\Delta y\to0}\frac{\Delta y}{\Delta x} f(x,y)=Δx0limΔy0limΔxΔy
那么问题来了,我们该怎么得到这个 Δ x \Delta x Δx Δ y \Delta y Δy 呢?

让我们回到这个隐函数 f ( x , y ) = C f(x,y)=C f(x,y)=C 上,我们可以得出
(2) lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 f x ( x + Δ x ) + f y ( y + Δ y ) = C \lim_{\Delta x\to0}\lim_{\Delta y\to0}f_x(x+\Delta x)+f_y(y+\Delta y)=C \tag2 Δx0limΔy0limfx(x+Δx)+fy(y+Δy)=C(2)
其中 f x f_x fx f y f_y fy 分别代表 f ( x , y ) f(x,y) f(x,y) x x x 方向和 y y y 方向的偏函数。(可以简单地理解为把原函数 f ( x , y ) f(x,y) f(x,y) 拆分为 f x ( x ) + f y ( y ) f_x(x)+f_y(y) fx(x)+fy(y),其中 f x f_x fx f y f_y fy 分别是关于 x x x 和关于 y y y 的函数)

发现什么了吗?

我们由 ( 2 ) − ( 1 ) (2)-(1) (2)(1) 可得
lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 f x ( x + Δ x ) − f x ( x ) + f y ( y + Δ y ) − f y ( y ) = 0 \lim_{\Delta x\to0}\lim_{\Delta y\to0}f_x(x+\Delta x)-f_x(x)+f_y(y+\Delta y)-f_y(y)=0 Δx0limΔy0limfx(x+Δx)fx(x)+fy(y+Δy)fy(y)=0

(3) lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 Δ x ⋅ f x ′ ( x ) + Δ y ⋅ f y ′ ( y ) = 0 \lim_{\Delta x\to0}\lim_{\Delta y\to0}\Delta x\cdot f&#x27;_x(x)+\Delta y\cdot f&#x27;_y(y)=0 \tag3 Δx0limΔy0limΔxfx(x)+Δyfy(y)=0(3)
其中 f x ′ ( x ) f&#x27;_x(x) fx(x) f y ′ ( y ) f&#x27;_y(y) fy(y) 分别代表 f ( x , y ) f(x,y) f(x,y) x x x 方向和 y y y 方向的偏导数。

那么我们由 ( 3 ) (3) (3) 可以得到
lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 − Δ x ⋅ f x ′ ( x ) = Δ y ⋅ f y ′ ( y ) lim ⁡ Δ x → 0 lim ⁡ Δ y → 0 Δ y Δ x = − f x ′ ( x ) f y ′ ( y ) f ′ ( x , y ) = − f x ′ ( x ) f y ′ ( y ) \lim_{\Delta x\to0}\lim_{\Delta y\to0}-\Delta x\cdot f&#x27;_x(x)=\Delta y\cdot f&#x27;_y(y)\\ \lim_{\Delta x\to0}\lim_{\Delta y\to0}\frac{\Delta y}{\Delta x}=-\frac{f&#x27;_x(x)}{f&#x27;_y(y)}\\ f&#x27;(x,y)=-\frac{f&#x27;_x(x)}{f&#x27;_y(y)} Δx0limΔy0limΔxfx(x)=Δyfy(y)Δx0limΔy0limΔxΔy=fy(y)fx(x)f(x,y)=fy(y)fx(x)
所以一个简洁的公式就被推导出来了!

验证

我们来验证一下这个结论的正确性。

让我们来看看这个很常见的隐函数:
f ( x , y ) = x 2 + y 2 f ( x , y ) = 25 f(x,y)=x^2+y^2\\ f(x,y)=25 f(x,y)=x2+y2f(x,y)=25
它的图像应该是下图所示的一个半径为5的圆

ZaWPte.png

我们根据刚才的结论可以得到
f ′ ( x , y ) = − f x ′ ( x ) f y ′ ( y ) = − 2 x 2 y = − x y f&#x27;(x,y)=-\frac{f&#x27;_x(x)}{f&#x27;_y(y)}=-\frac{2x}{2y}=-\frac{x}{y} f(x,y)=fy(y)fx(x)=2y2x=yx
我们再任取一个点 A ( 3 , 4 ) A(3,4) A(3,4)根据生活常识,我们可以得到隐函数在这个点上的导数(即图中黑线的斜率),也就是 − 3 4 -\frac{3}{4} 43

ZafY2d.png

我们再用公式验证一下:
f ′ ( 3 , 4 ) = − 3 4 f&#x27;(3,4)=-\frac{3}{4} f(3,4)=43

验证完毕。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值