因为我特别地垃圾,所以很多函数的求导过程都会忘记,所以特有这篇文章来记录一下。
导函数的定义
f ′ ( x ) = lim Δ x → 0 f ′ ( x + Δ x ) − f ′ ( x ) Δ x f'(x)=\lim_{\Delta x\to0}\frac{f'(x+\Delta x)-f'(x)}{\Delta x} f′(x)=Δx→0limΔxf′(x+Δx)−f′(x)
基本导函数公式
( C ) ′ = 0 (C)'=0 (C)′=0
[ f ( x ) ± g ( x ) ] ′ = f ′ ( x ) ± g ′ ( x ) \left[f(x)\pm g(x)\right]'=f'(x)\pm g'(x) [f(x)±g(x)]′=f′(x)±g′(x)
[ f ( x ) ⋅ g ( x ) ] ′ = lim Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x = lim Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x + Δ x ) + f ( x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x = lim Δ x → 0 g ( x + Δ x ) ⋅ ( f ( x + Δ x ) − f ( x ) ) + f ( x ) ⋅ ( g ( x + Δ x ) − g ( x ) ) Δ x = lim Δ x → 0 g ( x + Δ x ) ⋅ f ′ ( x ) + f ( x ) ⋅ g ′ ( x ) = f ( x ) ⋅ g ′ ( x ) + f ′ ( x ) ⋅ g ( x ) \begin{aligned} \left[f(x)\cdot g(x)\right]'&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x+\Delta x)+f(x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{g(x+\Delta x)\cdot(f(x+\Delta x)-f(x))+f(x)\cdot (g(x+\Delta x)-g(x))}{\Delta x}\\ &=\lim_{\Delta x\to 0}g(x+\Delta x)\cdot f'(x)+f(x)\cdot g'(x)\\ &=f(x)\cdot g'(x)+f'(x)\cdot g(x) \end{aligned} [f(x)⋅g(x)]′=Δx→0limΔxf(x+Δx)⋅g(x+Δx)−f(x)⋅g(x)=Δx→0limΔxf(x+Δx)⋅g(x+Δx)−f(x)⋅g(x+Δx)+f(x)⋅g(x+Δx)−f(x)⋅g(x)=Δx→0limΔxg(x+Δx)⋅(f(x+Δx)−f(x))+f(x)⋅(g(x+Δx)−g(x))=Δx→0limg(x+Δx)⋅f′(x)+f(x)⋅g′(x)=f(x)⋅g′(x)+f′(x)⋅g(x)
[ f [ g ( x ) ] ] ′ = lim Δ x → 0 Δ f [ g ( x ) ] Δ x = lim Δ x → 0 Δ f [ g ( x ) ] Δ g ( x ) ⋅ Δ g ( x ) Δ x = f ′ [ g ( x ) ] ⋅ g ′ ( x ) \begin{aligned} \left[f\left[g(x)\right]\right]'&=\lim_{\Delta x\to 0}\frac{\Delta f\left[g(x)\right]}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\Delta f\left[g(x)\right]}{\Delta g(x)}\cdot \frac{\Delta g(x)}{\Delta x}\\ &=f'\left[g(x)\right]\cdot g'(x) \end{aligned} [f[g(x)]]′=Δx→0limΔxΔf[g(x)]=Δx→0limΔg(x)Δf[g(x)]⋅ΔxΔg(x)=f′[g(x)]⋅g′(x)
幂函数
u ( x ) = f ( x ) g ( x ) ln [ u ( x ) ] = ln [ f ( x ) ] ⋅ g ( x ) u(x)=f(x)^{g(x)}\\ \ln\left[u(x)\right]=\ln\left[f(x)\right]\cdot g(x) u(x)=f(x)g(x)ln[u(x)]=ln[f(x)]⋅g(x)
两边同时求导,得
u
′
(
x
)
u
(
x
)
=
f
′
(
x
)
⋅
g
(
x
)
f
(
x
)
+
ln
[
f
(
x
)
]
⋅
g
′
(
x
)
u
′
(
x
)
=
[
f
′
(
x
)
⋅
g
(
x
)
f
(
x
)
+
ln
[
f
(
x
)
]
⋅
g
′
(
x
)
]
⋅
u
(
x
)
\begin{aligned} \frac{u'(x)}{u(x)}&=\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\\ u'(x)&=\left[\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\right]\cdot u(x) \end{aligned}
u(x)u′(x)u′(x)=f(x)f′(x)⋅g(x)+ln[f(x)]⋅g′(x)=[f(x)f′(x)⋅g(x)+ln[f(x)]⋅g′(x)]⋅u(x)
即
[
f
(
x
)
g
(
x
)
]
′
=
[
f
′
(
x
)
⋅
g
(
x
)
f
(
x
)
+
ln
[
f
(
x
)
]
⋅
g
′
(
x
)
]
⋅
[
f
(
x
)
g
(
x
)
]
\left[f(x)^{g(x)}\right]'=\left[\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\right]\cdot\left[f(x)^{g(x)}\right]
[f(x)g(x)]′=[f(x)f′(x)⋅g(x)+ln[f(x)]⋅g′(x)]⋅[f(x)g(x)]
由这个基本公式我们可以得到几个常用的特殊幂函数的导数:
(
x
a
)
′
=
(
1
⋅
a
x
+
ln
x
⋅
0
)
⋅
(
x
a
)
=
a
⋅
x
−
1
⋅
x
a
=
a
⋅
x
a
−
1
(
a
x
)
′
=
(
0
⋅
x
a
+
ln
a
⋅
1
)
⋅
(
a
x
)
=
ln
a
⋅
a
x
\begin{aligned} (x^a)'&=(\frac{1\cdot a}{x}+\ln x\cdot0)\cdot(x^a)\\ &=a\cdot x^{-1}\cdot x^a\\ &=a\cdot x^{a-1}\\ \\ (a^x)'&=(\frac{0\cdot x}{a}+\ln a\cdot 1)\cdot(a^x)\\ &=\ln a\cdot a^x \end{aligned}
(xa)′(ax)′=(x1⋅a+lnx⋅0)⋅(xa)=a⋅x−1⋅xa=a⋅xa−1=(a0⋅x+lna⋅1)⋅(ax)=lna⋅ax
对数函数
[ log a ( x ) ] ′ = lim Δ x → 0 log a ( x + Δ x ) − log a ( x ) Δ x = lim Δ x → 0 log a [ ( x + Δ x x ) 1 Δ x ] = lim Δ x → 0 log a [ ( 1 + Δ x x ) 1 Δ x ] \begin{aligned} \left[\log_a(x)\right]'&=\lim_{\Delta x\to0}\frac{\log_a(x+\Delta x)-\log_a(x)}{\Delta x}\\ &=\lim_{\Delta x\to0}\log_a\left[(\frac{x+\Delta x}{x})^{\frac{1}{\Delta x}}\right]\\ &=\lim_{\Delta x\to0}\log_a\left[(1+\frac{\Delta x}{x})^{\frac{1}{\Delta x}}\right] \end{aligned} [loga(x)]′=Δx→0limΔxloga(x+Δx)−loga(x)=Δx→0limloga[(xx+Δx)Δx1]=Δx→0limloga[(1+xΔx)Δx1]
令
x
Δ
x
=
h
\frac{x}{\Delta x}=h
Δxx=h ,我们有
[
l
o
g
a
(
x
)
]
′
=
lim
h
→
∞
log
a
[
(
1
+
1
h
)
h
x
]
=
lim
h
→
∞
log
a
[
(
1
+
1
h
)
h
]
⋅
1
x
\begin{aligned} \left[log_a(x)\right]'&=\lim_{h\to\infty}\log_a\left[(1+\frac{1}{h})^{\frac{h}{x}}\right]\\ &=\lim_{h\to\infty}\log_a\left[(1+\frac{1}{h})^h\right]\cdot \frac{1}{x} \end{aligned}
[loga(x)]′=h→∞limloga[(1+h1)xh]=h→∞limloga[(1+h1)h]⋅x1
根据自然常数
e
e
e 的定义,我们得到
[
l
o
g
a
(
x
)
]
′
=
log
a
e
x
=
(
ln
e
ln
a
)
x
=
1
ln
a
⋅
x
\begin{aligned} \left[log_a(x)\right]'&=\frac{\log_ae}{x}\\ &=\frac{(\frac{\ln e}{\ln a})}{x}\\ &=\frac{1}{\ln a\cdot x} \end{aligned}
[loga(x)]′=xlogae=x(lnalne)=lna⋅x1
先记到这里,想起来再更新吧…