常见函数的导数推导

因为我特别地垃圾,所以很多函数的求导过程都会忘记,所以特有这篇文章来记录一下。


导函数的定义

f ′ ( x ) = lim ⁡ Δ x → 0 f ′ ( x + Δ x ) − f ′ ( x ) Δ x f'(x)=\lim_{\Delta x\to0}\frac{f'(x+\Delta x)-f'(x)}{\Delta x} f(x)=Δx0limΔxf(x+Δx)f(x)

基本导函数公式

( C ) ′ = 0 (C)'=0 (C)=0

[ f ( x ) ± g ( x ) ] ′ = f ′ ( x ) ± g ′ ( x ) \left[f(x)\pm g(x)\right]'=f'(x)\pm g'(x) [f(x)±g(x)]=f(x)±g(x)

[ f ( x ) ⋅ g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x + Δ x ) + f ( x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x = lim ⁡ Δ x → 0 g ( x + Δ x ) ⋅ ( f ( x + Δ x ) − f ( x ) ) + f ( x ) ⋅ ( g ( x + Δ x ) − g ( x ) ) Δ x = lim ⁡ Δ x → 0 g ( x + Δ x ) ⋅ f ′ ( x ) + f ( x ) ⋅ g ′ ( x ) = f ( x ) ⋅ g ′ ( x ) + f ′ ( x ) ⋅ g ( x ) \begin{aligned} \left[f(x)\cdot g(x)\right]'&=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x+\Delta x)+f(x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{g(x+\Delta x)\cdot(f(x+\Delta x)-f(x))+f(x)\cdot (g(x+\Delta x)-g(x))}{\Delta x}\\ &=\lim_{\Delta x\to 0}g(x+\Delta x)\cdot f'(x)+f(x)\cdot g'(x)\\ &=f(x)\cdot g'(x)+f'(x)\cdot g(x) \end{aligned} [f(x)g(x)]=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x+Δx)+f(x)g(x+Δx)f(x)g(x)=Δx0limΔxg(x+Δx)(f(x+Δx)f(x))+f(x)(g(x+Δx)g(x))=Δx0limg(x+Δx)f(x)+f(x)g(x)=f(x)g(x)+f(x)g(x)

[ f [ g ( x ) ] ] ′ = lim ⁡ Δ x → 0 Δ f [ g ( x ) ] Δ x = lim ⁡ Δ x → 0 Δ f [ g ( x ) ] Δ g ( x ) ⋅ Δ g ( x ) Δ x = f ′ [ g ( x ) ] ⋅ g ′ ( x ) \begin{aligned} \left[f\left[g(x)\right]\right]'&=\lim_{\Delta x\to 0}\frac{\Delta f\left[g(x)\right]}{\Delta x}\\ &=\lim_{\Delta x\to 0}\frac{\Delta f\left[g(x)\right]}{\Delta g(x)}\cdot \frac{\Delta g(x)}{\Delta x}\\ &=f'\left[g(x)\right]\cdot g'(x) \end{aligned} [f[g(x)]]=Δx0limΔxΔf[g(x)]=Δx0limΔg(x)Δf[g(x)]ΔxΔg(x)=f[g(x)]g(x)

幂函数

u ( x ) = f ( x ) g ( x ) ln ⁡ [ u ( x ) ] = ln ⁡ [ f ( x ) ] ⋅ g ( x ) u(x)=f(x)^{g(x)}\\ \ln\left[u(x)\right]=\ln\left[f(x)\right]\cdot g(x) u(x)=f(x)g(x)ln[u(x)]=ln[f(x)]g(x)

两边同时求导,得
u ′ ( x ) u ( x ) = f ′ ( x ) ⋅ g ( x ) f ( x ) + ln ⁡ [ f ( x ) ] ⋅ g ′ ( x ) u ′ ( x ) = [ f ′ ( x ) ⋅ g ( x ) f ( x ) + ln ⁡ [ f ( x ) ] ⋅ g ′ ( x ) ] ⋅ u ( x ) \begin{aligned} \frac{u'(x)}{u(x)}&=\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\\ u'(x)&=\left[\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\right]\cdot u(x) \end{aligned} u(x)u(x)u(x)=f(x)f(x)g(x)+ln[f(x)]g(x)=[f(x)f(x)g(x)+ln[f(x)]g(x)]u(x)

[ f ( x ) g ( x ) ] ′ = [ f ′ ( x ) ⋅ g ( x ) f ( x ) + ln ⁡ [ f ( x ) ] ⋅ g ′ ( x ) ] ⋅ [ f ( x ) g ( x ) ] \left[f(x)^{g(x)}\right]'=\left[\frac{f'(x)\cdot g(x)}{f(x)}+\ln[f(x)]\cdot g'(x)\right]\cdot\left[f(x)^{g(x)}\right] [f(x)g(x)]=[f(x)f(x)g(x)+ln[f(x)]g(x)][f(x)g(x)]
由这个基本公式我们可以得到几个常用的特殊幂函数的导数:
( x a ) ′ = ( 1 ⋅ a x + ln ⁡ x ⋅ 0 ) ⋅ ( x a ) = a ⋅ x − 1 ⋅ x a = a ⋅ x a − 1 ( a x ) ′ = ( 0 ⋅ x a + ln ⁡ a ⋅ 1 ) ⋅ ( a x ) = ln ⁡ a ⋅ a x \begin{aligned} (x^a)'&=(\frac{1\cdot a}{x}+\ln x\cdot0)\cdot(x^a)\\ &=a\cdot x^{-1}\cdot x^a\\ &=a\cdot x^{a-1}\\ \\ (a^x)'&=(\frac{0\cdot x}{a}+\ln a\cdot 1)\cdot(a^x)\\ &=\ln a\cdot a^x \end{aligned} (xa)(ax)=(x1a+lnx0)(xa)=ax1xa=axa1=(a0x+lna1)(ax)=lnaax

对数函数

[ log ⁡ a ( x ) ] ′ = lim ⁡ Δ x → 0 log ⁡ a ( x + Δ x ) − log ⁡ a ( x ) Δ x = lim ⁡ Δ x → 0 log ⁡ a [ ( x + Δ x x ) 1 Δ x ] = lim ⁡ Δ x → 0 log ⁡ a [ ( 1 + Δ x x ) 1 Δ x ] \begin{aligned} \left[\log_a(x)\right]'&=\lim_{\Delta x\to0}\frac{\log_a(x+\Delta x)-\log_a(x)}{\Delta x}\\ &=\lim_{\Delta x\to0}\log_a\left[(\frac{x+\Delta x}{x})^{\frac{1}{\Delta x}}\right]\\ &=\lim_{\Delta x\to0}\log_a\left[(1+\frac{\Delta x}{x})^{\frac{1}{\Delta x}}\right] \end{aligned} [loga(x)]=Δx0limΔxloga(x+Δx)loga(x)=Δx0limloga[(xx+Δx)Δx1]=Δx0limloga[(1+xΔx)Δx1]

x Δ x = h \frac{x}{\Delta x}=h Δxx=h ,我们有
[ l o g a ( x ) ] ′ = lim ⁡ h → ∞ log ⁡ a [ ( 1 + 1 h ) h x ] = lim ⁡ h → ∞ log ⁡ a [ ( 1 + 1 h ) h ] ⋅ 1 x \begin{aligned} \left[log_a(x)\right]'&=\lim_{h\to\infty}\log_a\left[(1+\frac{1}{h})^{\frac{h}{x}}\right]\\ &=\lim_{h\to\infty}\log_a\left[(1+\frac{1}{h})^h\right]\cdot \frac{1}{x} \end{aligned} [loga(x)]=hlimloga[(1+h1)xh]=hlimloga[(1+h1)h]x1
根据自然常数 e e e 的定义,我们得到
[ l o g a ( x ) ] ′ = log ⁡ a e x = ( ln ⁡ e ln ⁡ a ) x = 1 ln ⁡ a ⋅ x \begin{aligned} \left[log_a(x)\right]'&=\frac{\log_ae}{x}\\ &=\frac{(\frac{\ln e}{\ln a})}{x}\\ &=\frac{1}{\ln a\cdot x} \end{aligned} [loga(x)]=xlogae=x(lnalne)=lnax1


先记到这里,想起来再更新吧…

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值