快速排序的最优和最差比较次数

这个问题其实也没有多么复杂,但是网上这部分内容不多,故总结一下最优与最差比较次数。

n个元素线性表快速排序,最好情况下比较次数是多少?

参照严书的方法,以第一位作为标杆。

①考虑第一趟排序,无论怎样也要有n-1次比较次数;

②如果此时能把数据分成两部分,前一部分与后一部分元素个数相近,那样就是最优的。

  例如,4 1 2 3 5 6 7,经过一趟排序,变成 1 2 3 4 5 6 7 。也就是说,以4为标杆,一趟后分成了两部分,这两部分个数相同或相差  1,那么快排会很优。

  于是,可以想到,最优时,n个数,第一趟分成前(n-1)/2,后(n-1)/2两组,每组也是按照最优的分,设最优是an,于是有:

   an = a⌊(n-1)/2+a⌈(n-1)/2⌉ + n - 1

  比如,n=7时,最优情况就是  a7=a3+a3+6 ,a3=a1+a1+2 ,而显然a1=0。 

   于是a3=2,a7=10。

   举 例  4 1 3 2 6 5 7 。第一次4为标杆,一趟后为 2 1 3 4 6 5 7 

   第二趟两边分别以2,6为标杆,这样最好,因为是均分了。

   问题,n=8时,最好排序次数?

   a8=7+a4+a3,a3算的2,a4=3+a1+a2,显然a2=1,于是a4=4,故a8=13

   因此,n=8时,最好情况下比较次数是13。

  举例,4 1 3 2 6 5 7 8  可以数一下

   对于别的情况,参照这个思路即可轻松求比较次数以及举例。

 

n个元素线性表快速排序,最坏情况下比较次数是多少?

    这个就容易多了,因为顺序或者逆序时最坏的。

    故比较次数,1+2+3……+ n-1 = n(n-1)/2

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值