Leetcode 28. Implement strStr() KMP算法解字符串匹配问题


2021-05-12 更新
  • 两个步骤
    • ne数组求解
    • 匹配
  • 整体思想
    两个步骤,都是i按照循环从1走到最后,j不断进行调整。匹配就两者都往后,不匹配j就往前跳,跳到头就结束。
    ne 数组举例模拟
    在这里插入图片描述

const int N = 5e4 + 10;
int ne[N];
class Solution {
public:
    int strStr(string s, string p) {
        int m = s.size(), n = p.size();
        if(n == 0) return 0;
        
        // 下标从1开始,故最前面插入0
        s.insert(0, " ");
        p.insert(0, " ");
        
        // 为什么非要用 j + 1 ?,ne[i] = j 中,j>0,恰好就能和s[i]的后缀匹配上,且j就是在p中,这个局部匹配串里最后那个元素的位置。 j + 1表示它的下一个。这么做方便理解和编程
        for(int i = 2, j = 0; i <= n; i ++){
            while(j && p[i] != p[j + 1]) j = ne[j]; // j > 0的条件就是当j 退回到1这个位置,说明从头匹配,直接退出。不加条件会死循环
            
            if(p[i] == p[j + 1]) j ++;
            ne[i] = j;
        }
        
        for(int i = 1, j = 0; i <= m; i ++){
            while(j && s[i] != p[j + 1]) j = ne[j];
            
            if(s[i] == p[j + 1]) j ++;
            if(j == n){
                return i - n; // 如果从1开始 i - n + 1
                // j = ne[j] 继续匹配
            }
        }
        return -1;
    }
};

class Solution {
    public int strStr(String haystack, String needle) {
        if(needle.equals("")) {
            return 0;
        }
        if(haystack.equals("")) {
            return -1;
        }
        
        // 构造KMP中的dp矩阵
        int m = needle.length();
        // 各个状态(行)遇到下一个字符(列)跳转到哪个状态
        int[][] dp = new int[m][256]; 
        // 影子状态
        int X = 0;  
        dp[0][needle.charAt(0)] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < 256; j++) {
                //假设下个字符不匹配,此时要回去看影子状态,从而得知跳转到哪个状态
                dp[i][j] = dp[X][j];  
            }
            // 只有pat上i的字符匹配,跳转到下个状态
            dp[i][needle.charAt(i)] = i + 1;  
            // 更新影子状态
            X = dp[X][needle.charAt(i)];
        }
        
        // 构造dp完成后,开始search
        // 初始状态为0
        int s = 0;
        for (int i = 0; i < haystack.length(); i++) {
            s = dp[s][haystack.charAt(i)];
            if (s == m) {
                return i - m + 1;
            }
        }
        
        // 匹配失败,返回-1
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值