I - 聪明的木匠
一位老木匠需要将一根长的木棒切成N段。每段的长度分别为L1,L2,......,LN(1 <= L1,L2,…,LN <= 1000,且均为整数)个长度单位。我们认为切割时仅在整数点处切且没有木材损失。
木匠发现,每一次切割花费的体力与该木棒的长度成正比,不妨设切割长度为1的木棒花费1单位体力。例如:若N=3,L1 = 3,L2 = 4,L3 = 5,则木棒原长为12,木匠可以有多种切法,如:先将12切成3+9.,花费12体力,再将9切成4+5,花费9体力,一共花费21体力;还可以先将12切成4+8,花费12体力,再将8切成3+5,花费8体力,一共花费20体力。显然,后者比前者更省体力。
那么,木匠至少要花费多少体力才能完成切割任务呢?
Input第1行:1个整数N(2 <= N <= 50000)
第2 - N + 1行:每行1个整数Li(1 <= Li <= 1000)。Output输出最小的体力消耗。Sample Input
3 3 4 5Sample Output
19
考点:优先队列
#include<stdio.h>
#include<algorithm>
#include<queue>
using namespace std;
int main()
{
int n;
priority_queue<int,vector<int>,greater<int> > q; //按照元素从小到大的顺序出队
while(scanf("%d",&n)!=EOF)
{
while(!q.empty()) q.pop();
for(int i=0; i<n; i++)
{
int len;
scanf("%d",&len);
q.push(len);
}
int ans=0;
while(q.size()>1)
{
int x=q.top(); //返回优先队列队顶元素
q.pop(); //删除队顶元素
int y=q.top(); //返回优先队列队顶元素
q.pop(); //删除队顶元素
ans+=x+y;
q.push(x+y); //加入一个元素
}
printf("%d\n",ans);
}
return 0;
}