Codeforces-832D-Misha, Grisha and Underground

本文详细解析了Codeforces中832D问题,题目要求在给定的树形结构中,对于每个查询找出三个节点a, b, c之间的最大公共路径点数。通过对公共路径长度公式的推导,利用LCA(最近公共祖先)算法求解。数据规模为n≤1e5,q≤1e5。作者在解答过程中复习了LCA算法,并分享了AC代码。" 103233383,5772046,CentOS 7.4 中移除virbr0虚拟网桥的步骤,"['Linux系统管理', '网络配置', 'CentOS']
摘要由CSDN通过智能技术生成
题目链接

codeforces-832D

题目大意

给一个 n 个节点的树,然后q个询问,每一个询问给三个节点 a,b,c
你可以选择其中一个节点,求另外两个点到这个点的 公共路径上的 最大点数?

数据范围

2n1e51q1e5

解题思路

可以将求点数转化为求边数,因为是树,所以点数就等于边数+1,而边数就是路径长度。
看到一个求公共路径长度的公式:
dist(x,y) 表示 x 节点 到 y 节点的长度。
若选择节点 a 那么 c -> a b –>a 的公共路径长度为:
[dist(c,a)+dist(b,a)dist(b,c)]/2
这个画个图出来稍微想一想就知道了。选择 b c的以此类推。
至于求两点之间的距离,用LCA就可以了。
最后就只需要依次选择 a,b,c MAX就好。

这道题刚好,复习了一下LCA,确实忘得差不多了。电脑里还没LCA的板子,一会儿过去写一份。

AC代码:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MaxN = 1e5;

int n, q, all;
int pre[2 * MaxN + 5], last[MaxN + 5], other[2 * MaxN + 5];
int dep[MaxN + 5];
int up[MaxN + 5][22]; 
//up[i][j]表示i节点向上走2的j次方步所能到达的点

void build(int x, int y)
{
    pre[++all] = last[x];
    last[x] = all;
    other[all] = y;
}

void Dfs(int x, int fa)
{
    dep[x] = dep[fa] + 1;
    up[x][0] = fa;
    for(int i = 1; i <= 20; i++) 
        up[x][i] = up[up[x][i - 1]][i - 1];//更新up

    int ed = last[x], dr;
    while(ed != -1) {
        dr = other[ed];
        if(dr != fa)
            Dfs(dr, x);
        ed = pre[ed];
    }
}

int Get_LCA(int x, int y)
{
    if(dep[x] < dep[y]) swap(x, y);
    int d = dep[x] - dep[y];
    for(int i = 0; i <= 20; i++) //是dep[x]和dep[y]的深度一样
        if(d & (1 << i))
            x = up[x][i];

    if(x == y) return x;
    for(int i = 20; i >= 0; i--) {
        if(up[x][i] != up[y][i]) {
            x = up[x][i];
            y = up[y][i];
        }
    }
    return up[x][0];
    //为什么return这个?想一下就应该知道了
}

int get_dist(int x, int y)
{
    int u = Get_LCA(x, y);
    return dep[x] + dep[y] - 2 * dep[u];
}

int main()
{
    while(scanf("%d %d", &n, &q) != EOF)
    {
        all = -1;
        memset(last, -1, sizeof(last));
        for(int i = 2; i <= n; i++) {
            int p;
            scanf("%d", &p);
            build(p, i); build(i, p);
        }
        dep[1] = 1;
        Dfs(1, 0);
        for(int i = 1; i <= q; i++) {
            int a, b, c;
            scanf("%d %d %d", &a, &b, &c);
            int ans = 0;

            int dis_ab = get_dist(a, b);
            int dis_ac = get_dist(a, c);
            int dis_bc = get_dist(b, c);

            //画个图出来稍微观察一下就能得到这个公式
            int na = (dis_ac + dis_ab - dis_bc) / 2;
            int nb = (dis_ab + dis_bc - dis_ac) / 2;
            int nc = (dis_ac + dis_bc - dis_ab) / 2;

            ans = max(na + 1, max(nb + 1, nc + 1));
            printf("%d\n", ans);
        }

        memset(pre, 0, sizeof(pre));
        memset(other, 0, sizeof(other));
        memset(dep, 0, sizeof(dep));
        memset(up, 0, sizeof(up));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值