这个问题引发了一个常见的现象,即大模型(如讯飞星火、Kimi等)在涉及简单的加法运算时,结果经常不准确。我想主要有以下几个原因:
问题原因
1. 模型的训练目标不是计算器
大语言模型(如GPT、讯飞星火、Kimi)并不是为数学运算专门设计的。它们的主要目标是生成符合语义和上下文的自然语言。虽然它们能处理一些简单的运算,但它们在本质上是基于模式匹配和统计语言模型。这意味着它们更擅长处理语言信息,而不是精确地执行数学计算。
2. 缺乏逐位精度运算的机制
在语言模型的架构中,数字和符号只是模型处理的语言片段,而非按照传统编程语言的数值变量进行处理。加法的本质对于模型来说是一种模式学习(例如,看到「2 + 2 = 4」这样的表达),而不是逐位的数值运算。因此,如果出现更复杂的数值组合,模型会根据训练数据和上下文猜测答案,而不会严格遵循数学规则。
3. 小数和浮点数精度问题
当涉及小数和浮点数运算时,大语言模型可能会出现精度问题。语言模型并不会像编程语言中的浮点数计算那样处理精确的小数位数,它可能只是近似输出结果,这就导致了计算结果的不一致。例如,在加法过程中,小数点后的数字可能被舍入或被忽略。
4. 累积误差
当多个数值相加时,错误可能会逐步累积,尤其是当模型在预测下一个数值时。如果模型的某一步运算有微小的偏差,后续步骤会进一步加大误差,最终导致结果偏离正确答案。这就是为什么在处理较多的加数时,错误会更加明显。
5. 语言模型的工作机制——自回归生成
大多数自然语言生成模型(包括GPT系列)采用的是自回归生成机制。每次生成下一个数字时,它基于当前的输入状态来预测下一个数值或符号。因此,模型在加法计算时并非一次性处理所有的数值,而是每次处理一个部分。在预测的过程中,尤其是面对复杂的数值,可能会发生推断上的偏差或错误。
6. 训练数据不足以覆盖复杂计算场景
尽管大模型在训练过程中可能见过大量的数学表达式,但这些表达式可能并不足以让模型完全掌握复杂场景下的数值计算规则。尤其是在涉及多个小数或较大范围的加减乘除运算时,训练数据的局限性可能会导致错误。
解决办法
虽然大语言模型在自然语言生成和理解方面有其独特的优势,但在涉及精确计算时,还是应该使用专门的数学库或计算工具(如Python的numpy
、calculator
、Excel
等)。如果需要在聊天中进行复杂计算,可以通过调用专门的计算插件来确保结果的正确性。下面使用 LangChain 自定义Tool来实现能进行加法计算的AI对话助手。
LangChain
准备工作
代码语言:javascript
复制
pip install --upgrade langchain
pip install --upgrade langchain-openai
代码展示
代码语言:javascript
复制
from dotenv import load_dotenv, find_dotenv
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
# 加载环境变量
_ = load_dotenv(find_dotenv()) # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY
# 模型
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
# 定义一个能够执行加法运算的函数,支持整型和浮点型数据
def add_numbers(inputs: str) -> str:
try:
# 提取输入中的两个数字,假设用户输入的是"5 + 3.2"这种格式
print("inputs:", inputs)
numbers = inputs.split("+")
if len(numbers) != 2:
return "Please provide input in the format 'a + b'."
# 将字符串转换为浮点数并计算结果,支持整型和浮点型数据
num1 = float(numbers[0].strip())
num2 = float(numbers[1].strip())
result = num1 + num2
return f"The result of {num1} + {num2} is {result}."
except ValueError:
return "Invalid input. Please provide valid numbers in the format 'a + b'."
# 创建Tool工具,LangChain的Agent可以调用这个工具来执行加法
add_tool = Tool(
name="add_numbers",
func=add_numbers,
description="Takes two numbers (integer or float) in the format a + b and returns their sum."
)
# 初始化代理,并将加法工具传递给代理
tools = [add_tool]
# 使用initialize_agent来创建代理
agent = initialize_agent(
tools,
llm,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
# 与代理进行交互,测试整型和浮点型运算
result_int = agent.run("What is 10 + 20?")
result_float = agent.run("What is 5.5 + 3.2?")
print(result_int)
print(result_float)
效果展示
通过计算整形1028 + 2048
和浮点型 1005.5 + 2513.2
都得到了正确答案。
计算结果
上面只是参考,更复杂的情况可通过自定义tool来实现!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓