DeepSeek-V3
DeepSeek-V3是一个拥有671B参数的MoE模型,吞吐量每秒达60 token,比上一代V2提升3倍;在数学代码性能上,堪比国外大模型Claude 3.5 Sonnet。
接下来,我们把DeepSeek接入到PyCharm中,并利用其能力辅助我们进行代码开发。
效果演示
首先来看一下效果。
我们可以直接选中代码,并对代码段进行解释。
我们也可以通过选中代码,对代码进行修改。
创建API Key
首先进入DeepSeek官网,官网链接如下
https://www.deepseek.com/
点击API开放平台:
点击左侧“API Keys”,点击创建 API key,输出名称为“AI 代码提示”,也可以使用其它自定义的名称。
点击“创建",一定要记录此处的 API key,可以先将 API key 复制在其它地方。
在PyCharm中下载Continue插件
打开PyCharm,打开文件->设置->插件,搜索“Continue”,点击安装。
等待插件安装完毕后,点击“应用”,插件安装成功。
配置Continue
插件安装成功后,在右侧的标签栏中,会显示一个Continue的标签,我们点击即可进入,随后点击设置按键,如下图。
点击后,文本编辑区将会弹出配置文件。
我们对配置文件进行修改,将内容替换为下面的内容:
{` `"completionOptions": {` `"BaseCompletionOptions": {` `"temperature": 0.0,` `"maxTokens": 256` `}` `},` `"models": [` `{` `"title": "DeepSeek",` `"model": "deepseek-chat",` `"contextLength": 128000,` `"apiKey": "REDACTED",` `"provider": "deepseek",` `"apiBase": "https://api.deepseek.com/beta"` `}` `],` `"tabAutocompleteModel": {` `"title": "DeepSeek Coder",` `"model": "deepseek-coder",` `"apiKey": "REDACTED",` `"provider": "deepseek",` `"apiBase": "https://api.deepseek.com/beta"` `},` `"customCommands": [` `{` `"name": "test",` `"prompt": "{` `{` `{ input }}}\n\nWrite a comprehensive set of unit tests for the selected code. It should setup, run tests that check for correctness including important edge cases, and teardown. Ensure that the tests are complete and sophisticated. Give the tests just as chat output, don't edit any file.",` `"description": "Write unit tests for highlighted code"` `}` `],` `"contextProviders": [` `{` `"name": "diff",` `"params": {}` `},` `{` `"name": "folder",` `"params": {}` `},` `{` `"name": "codebase",` `"params": {}` `}` `],` `"slashCommands": [` `{` `"name": "share",` `"description": "Export the current chat session to markdown"` `},` `{` `"name": "commit",` `"description": "Generate a git commit message"` `}` `]``}
修改时将会弹出提示,点击确定。
随后,我们将两处apiKey替换为先前保存的API key。
保存文件后,即可开始使用。
恭喜你完整地学完了教程,给你点赞 👍
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓