求求你,不要再盲目跟风本地部署Deepseek了

大家新年好!这几天都忙着串门,拜年,都没时间更新文章了。今天稍有闲暇,准备着写点什么。打开手机,刷刷某音,某号,某书等看看,不约而同的都是各种Deepseek的相关推荐,而更多的都是一些“教Deepseek本地部署”的各种视频,有些甚至高达一百多万播放量。看来春节期间科技圈Deepseek的热度飙升,引得许多人跟风尝试起来了。

然而,我却要来给大家刹刹车,降降温,其实本地部署 Deepseek 并非明智之举,下面我将从以下五个方面进行分析……

一、硬件门槛高

对于最低的Deepseek-1.5B 模型至少需要 8GB 显存,对于 90% 的普通笔记本来说难以满足。以配备 RTX 3060(12G 显存得1500元以上吧)的电脑为例,加载模型就会占用 10.3G 显存,使用过程中稍多开几个程序就可能导致显存爆满。对于一般的笔记本若想流畅运行,多数需升级到 16G 显存(而此类笔记本价格得超万元吧)。并且实际运行时,本地生成一段 100 字的文案可能需要 3 分钟,远不及云端的 3 秒响应速度。

对于7B模型,8B模型和其它更高级别的模型更不用说了,一句话说白了还是得“花钱”!(PS:对应的显卡价格自己通过Deepseek去查一下)

二、安全隐患突出

其实我想很多人是自以为本地部署使用Deepseek更私密更安全。可是我要说的是错误配置端口这一疏忽,很可能会给黑客可乘之机,他们利用端口漏洞,短短几秒钟内便能成功攻破系统。一旦系统被攻破,用户在使用过程中的聊天记录将毫无保留地暴露在黑客眼前,本地存储的各类文件,无论是工作文档、个人照片还是私密视频等,也都面临着被窃取、曝光的风险。不可否认,你们在平台上看到的哪些教程是不是足够专业,你自己又是否足够专业(我想大部分人应该都是一知半解的跟风吧),哪些链接是否植入有木马病毒犹未可知,本身AI就是一个全新的网络产物,建议在非专业的指导下还是不要轻易本地部署了。

从非官方渠道下载的模型,由于缺乏有效的安全监管与审核机制,极有可能被不法分子植入恶意代码。这些恶意代码一旦被激活,就可能导致系统瘫痪、数据丢失,甚至会让用户的电脑成为黑客进行网络攻击的 “肉鸡”。不仅如此,长期让硬件高负荷运行,会对硬件造成极大的不可逆转的损伤。以显卡为例,在持续高负荷的工作状态下,显卡的寿命会缩短 60%。而当显卡出现故障需要维修时,维修费用往往十分高昂,这无疑是一笔额外的、令人头疼的开支。

三、部署的并非完整的模型

就目前的情况而言,在各大网站上,那些关于通过 ollama 来完成本地部署的教学视频相当流行。进一步观察可以发现,在 ollama 网站上的 deepseek 模型,从本质上来说属于蒸馏模型。这个模型与官网的版本存在一定的差异。虽然它经过了独特的微调训练,但是其中却暗藏着诸多复杂性。对于刚接触的小白,本地部署从模型原理理解到实际操作,都充满挑战,极易陷入困境(PS:没有这个金刚钻就不要揽这个瓷器活)。而官网版本使用简便,且能满足大部分基础需求。权衡之下,本地部署deepseek在操作便捷性、使用适配性上难占上风。

四、部署过程困难重重

尽管各大平台上有很多“本地部署Deepseek”的保姆级教程,但是绝大多数应该都是“标题党”,普通人在部署时还是会遇到诸多问题。哪些所谓“一分钟教会……”和“几步教会:”的都是为了吸引眼球,我相信绝大多数人要完成本地部署Deepseek并不是那么容易(Ps:你们可以把各自完成部署的时间打在评论区都对比看看),整个过程不说全是英文了,就是按照保姆级教程来操作,你都未必容易吧。比如下面——GitHub无法访问,就卡在了第一步……

五、能耗大

本地部署 Deepseek 的功耗相对较高。在待机状态下,每小时的功耗约为 150W,若持续进行对话交互,每小时功耗则会提升至 300W。以每日使用 4 小时,每度电 0.6 元计算,一个月(30 天)的电费约为 22 元。与之对比,当前市场上某款热门的云端服务,其基础会员年费仅为 110 元。可见,本地部署5个月的电费支出便足以支付该云端服务一年的会员费用,成本差异显著。由此可见,相较于本地部署,云端服务在成本控制方面具备明显优势。

六、有更好的替代方案

Deepseek 官方 API能自动升级模型,且免费使用,阿里云 PAI 可一键调用 Deepseek,360的纳米AI搜索也能免费调用Deepseek的R1模型高速专线,秘塔AI搜索里面也内置了Deepseek的R1模型等。

综上所述,科技的发展旨在让生活更便捷,在决定是否本地部署 Deepseek 前,应冷静思考自身需求,避免盲目跟风,陷入烧钱又崩溃的困境。如果你也正想本地部署deepseek,那么还是请你三思而后行,如果你已经部署了,建议你先体验一下哈(不然白忙活了),好不好用回头欢迎在评论区分享成果。

那么如何使用Deepseek呢,我的建议是第一优先级是使用官方网站Deepseek(https://chat.deepseek.com/)……

重要的事情说三次:不要再本地部署了!不要再本地部署了!不要再本地部署了!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何在本地化部署环境中卸载 DeepSeek 对于已经在本地环境成功安装并运行过 DeepSeek 的情况,如果想要完全移除该应用及其依赖项,则需按照特定流程操作。通常来说,在 Ollama 平台上管理的应用程序可以通过平台自带命令来实现简便的删除功能。 #### 使用 Ollama 命令行工具卸载 DeepSeek 假设当前是在 Windows 11 笔记本电脑上通过 Ollama 安装了 DeepSeek 应用,那么可以利用 Ollama 提供的命令行接口来进行卸载工作: ```bash ollama uninstall deepseek-coder:33b ollama uninstall deepseek-coder:1.3b ``` 上述两条指令分别用于卸载不同版本的 DeepSeek 模型实例[^2]。需要注意的是,执行这些命令之前应该先停止任何正在运行的服务或容器,以免造成数据丢失或其他异常状况。 另外,为了确保彻底清除所有与 DeepSeek 相关的数据文件以及配置设置,建议查看官方文档获取更详细的指导说明[^1]。同时也要注意清理可能残留的日志记录或者其他自定义创建的内容。 #### 清理额外资源 除了使用 `uninstall` 命令外,还应当考虑手动检查是否有其他关联组件需要单独处理。比如存储于磁盘上的缓存资料、临时文件夹中的项目等都可能是潜在的目标对象。具体路径取决于最初部署时的选择和个人习惯。 最后提醒一点,当完成整个卸载过程之后,最好重启一次计算机以确认一切恢复正常运作状态。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值