半监督学习

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


介绍

半监督学习(Semi-Supervised Learning,SSL)是机器学习领域中的一个重要分支,它结合了监督学习和无监督学习的思想,用于处理标签数据稀缺而无标签数据丰富的场景。
常用方法:

  • Self Training自训练
  • Label Propagation标签传播
  • Label Spreading标签扩散

一、Self Training自训练

1、介绍

Self Training自训练是一种简单的半监督学习方法,它首先使用已标记的数据训练一个监督学习模型。然后,该模型用于预测未标记数据的标签。预测最自信的标签可以被选择添加到训练集中,然后模型在新的、更大的训练集上重新训练。先训练一个小模型,再继续预测标签,类似于迁移学习。当无标签数据和有标签数据分布相同时,使用自训练方法效果最佳。

2、代码示例

  • 读入数据
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

# 数据预处理计算函数
def preprocessing(df):
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import OrdinalEncoder
    from sklearn.compose import ColumnTransformer
    
    cat_cols= df.select_dtypes(include=["object"])   # 分类型变量
    num_cols= df.select_dtypes(include=["int", "float"])   # 数值型变量

    # 连续型数据
    num_imp= SimpleImputer(strategy='mean')  # 缺失值
    num_std= StandardScaler()  # 标准化
    num_pipeline= Pipeline(steps=[("num_imp", num_imp), ("num_std", num_std)])
    # 分类型数据
    cat_imp= SimpleImputer(strategy="most_frequent")  # 缺失值
    cat_encode= OrdinalEncoder()   # 数据编码
    cat_pipeline= Pipeline(steps=[("cat_imp", cat_imp), ("cat_encode", cat_encode)])

    col_trans= ColumnTransformer(transformers=[("num_pipeline", num_pipeline, num_cols.columns),
                                           ("cat_pipeline", cat_pipeline, cat_cols.columns),])
    # 数据集处理的计算
    transfer= col_trans.fit(df)
    return transfer

# 读入数据
raw_data= pd.read_csv('半监督学习.csv')
labels= raw_data.pop("resp_flag")  # 标签
  • 缺失数据对比
print("缺失值/总样本:"+str(labels.isnull().sum())+"/"+str(len(labels)))

在这里插入图片描述

  • 数据处理
    注意:切分的测试数据集一定是有标签的样本
# sklearn中的半监督学习算法要求,所有缺失的标签必须用-1填充
labels_fill= labels.fillna(-1)

# 特征数据处理
transfer= preprocessing(raw_data)
data_trans= transfer.transform(raw_data)

data_concat= pd.concat([labels_fill, pd.DataFrame(data_trans)], axis= 1)

# 保存一部分有标签样本作为测试集
mask_labeled= (labels_fill != -1)
mask_unlabeled= (labels_fill == -1)

data_labeled= data_concat[mask_labeled]
data_unlabeled= data_concat[mask_unlabeled]

# 切分测试集
from sklearn.model_selection  import train_test_split
train, test= train_test_split(data_labeled, test_size=0.2, stratify= data_labeled["resp_flag"], random_state= 42)

Xtrain= pd.concat([train, data_unlabeled])
Ytrain= Xtrain.pop("resp_flag")
  • 使用模型
from sklearn.ensemble import RandomForestClassifier
RF= RandomForestClassifier(oob_score=True)

# Self Training
from sklearn.semi_supervised import SelfTrainingClassifier
RF_self_training= SelfTrainingClassifier(RF)
RF_self_training.fit(Xtrain, Ytrain)

# 测试集模型评估
Xtest= test
Ytest= Xtest.pop("resp_flag")

from sklearn.metrics import roc_auc_score
print("AUC: ", roc_auc_score(Ytest, RF_self_training.predict_proba(Xtest)[:, 1]))

在这里插入图片描述

3、参数解释

base_estimator: BaseEstimator,# 基学习器
threshold: Float = 0.75,# 默认阈值0.75,大于0.75,小于0.25会被打标签,该参数比k_best更为常用
criterion: Literal['threshold', 'k_best'] = "threshold",# 默认值threshold,为该值时和threshold参数相同,即设阈值,k_best超参数阈值,如为10,则不考虑预测概率,只取排名前10的打标签
k_best: Int = 10,# 超参数阈值,如为10,则不考虑预测概率,只取排名前10的打标签
max_iter: int | None = 10,# 最大迭代次数
verbose: bool = False

二、Label Propagation(标签传播)

在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。

1、介绍

Label Propagation(标签传播)基本原理:Label Propagation算法基于图理论。算法首先构建一个图,其中每个节点代表一个数据点,无论是标记的还是未标记的。节点之间的边代表数据点之间的相似性。算法的目的是通过图传播标签信息,使未标记数据获得标签。

关键特点:
相似性度量:通常使用K近邻(KNN)或者基于核的方法来定义数据点之间的相似性。
标签传播:标签信息从标记数据点传播到未标记数据点,通过迭代过程实现。
适用场景:适合于数据量较大、标记数据稀缺的情况。

  • 以环形数据为例,绿色全是为打标签的数据:
    在这里插入图片描述
    打标签后数据结果如图:
from sklearn.semi_supervised import LabelPropagation

label_propagation = LabelPropagation(kernel="knn")
label_propagation.fit(X, labels)

output= np.asarray(label_propagation.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]

plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],);

在这里插入图片描述

2、代码示例

from sklearn.semi_supervised import LabelPropagation

label_propagation = LabelPropagation(kernel="knn")
label_propagation.fit(Xtrain, Ytrain)

Ytrain_propagation= label_propagation.transduction_

from sklearn.ensemble import RandomForestClassifier
RF_propagation= RandomForestClassifier(oob_score=True)
RF_propagation.fit(Xtrain, Ytrain_propagation)

print("AUC: ", roc_auc_score(Ytest, RF_propagation.predict_proba(Xtest)[:, 1]))

在这里插入图片描述

3、参数解释

    kernel: ((...) -> Any) | Literal['knn', 'rbf'] = "rbf",# knn:k近邻,RBF核用于计算图中节点之间的相似度。这些相似度值随后用于传播标签信息,从而根据相邻节点的标签来预测未知节点的标签,rbf函数和正态分布比较相似
    *,
    gamma: Float = 20, # rbf函数的系数,可以简单理解为正态分布的方差
    n_neighbors: Int = 7, # 附近的7个样本,哪个样本多,就打成哪个标签,为knn时生效
    max_iter: Int = 1000,# 迭代次数
    tol: float = 0.001,# 算法收敛的阈值
    n_jobs: Int | None = None

三、Label Spreading(标签扩散)

1、介绍

基本原理:Label Spreading和Label Propagation非常相似,但在处理标签信息和正则化方面有所不同。它同样基于构建图来传播标签。

关键特点:
正则化机制:Label Spreading引入了正则化参数,可以控制标签传播的过程,使算法更加健壮。
稳定性:由于正则化的存在,Label Spreading在面对噪声数据时通常比Label Propagation更稳定。
适用场景:同样适用于有大量未标记数据的情况,尤其当数据包含噪声或者不完全标记时。

2、代码示例

from sklearn.semi_supervised import LabelSpreading

label_spreading = LabelSpreading(kernel="knn", alpha= 0.2)
label_spreading.fit(Xtrain, Ytrain)

Ytrain_spreading= label_spreading.transduction_

from sklearn.ensemble import RandomForestClassifier
RF_spreading= RandomForestClassifier(oob_score=True)
RF_spreading.fit(Xtrain, Ytrain_spreading)

print("AUC: ", roc_auc_score(Ytest, RF_spreading.predict_proba(Xtest)[:, 1]))

在这里插入图片描述

3、参数解释

	kernel: ((...) -> Any) | Literal['rbf', 'knn'] = "rbf",
    *,
    gamma: Float = 20,
    n_neighbors: Int = 7,
    alpha: Float = 0.2, # 正则化参数,用于控制算法对标签平滑的程度,值较小时,会更强调邻居节点信息,值较大时,更倾向于保持原始标签
    max_iter: Int = 30,
    tol: Float = 0.001, # 算法收敛的阈值
    n_jobs: Int | None = None
  • 20
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值