POJ 1852 Ants

本文介绍了一个有趣的蚂蚁行走问题,通过转换思路简化了问题的复杂度。文章提供了详细的分析过程及C语言实现代码,展示了如何计算蚂蚁全部掉落杆子所需的最早和最晚时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:有n个蚂蚁在一个杆长为d的杆上,他们的位置(以蚂蚁和杆的最左端的距离为标准)依次是接下来的n个数。

任意的蚂蚁爬行的时候,若两个蚂蚁相遇,那么他们按照各自的反方向爬行(蚂蚁转弯的时间忽略不计),若蚂蚁爬到了最左(右)端,那么该蚂蚁掉下来。

蚂蚁最初选择行走的方向不定,求所有蚂蚁都掉下来的可能的最早时间和最晚时间。

分析:

该问题看起来复杂,其实不然,如果光想着两只蚂蚁相遇之后的情景,那就是很复杂了,我们可以换位思考,我们要求蚂蚁都掉下来的时间,因为每个蚂蚁对我们来说都是一样的,所以就算两个蚂蚁相遇了,他们的本质对我们来说还是不变(相遇前一个向左爬行,一个向右爬行;相遇后还是一个向左爬行一个向右爬行)。

看出来这个问题,这题就没有复杂可言了,显然答案已经揭晓:

AnsMin= MAX{AnsMin, Min(a,b) }  (a,b代表每只蚂蚁距离最左端和最右端的距离)

AnsMax=MAX{AnsMax,Max(a,b) }

好了,贴上代码吧:

 1 #include<stdio.h>
 2 #define MAX(a,b) a>b ? a : b
 3 int main()
 4 {
 5     int N,d,n;
 6     scanf("%d",&N);
 7     for(int i=1;i<=N;i++){
 8         scanf("%d%d",&d,&n);
 9         int a,b,AnsMin=0,AnsMax=0;
10         while(n--){
11             scanf("%d",&a);
12             b=d-a;
13             if(a>b) a=b,b=d-a;
14             AnsMin=MAX(AnsMin,a);
15             AnsMax=MAX(AnsMax,b);
16         }
17         printf("%d %d\n",AnsMin,AnsMax);
18     }
19     return 0;
20 }
View Code

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值