题目大意:有n个蚂蚁在一个杆长为d的杆上,他们的位置(以蚂蚁和杆的最左端的距离为标准)依次是接下来的n个数。
任意的蚂蚁爬行的时候,若两个蚂蚁相遇,那么他们按照各自的反方向爬行(蚂蚁转弯的时间忽略不计),若蚂蚁爬到了最左(右)端,那么该蚂蚁掉下来。
蚂蚁最初选择行走的方向不定,求所有蚂蚁都掉下来的可能的最早时间和最晚时间。
分析:
该问题看起来复杂,其实不然,如果光想着两只蚂蚁相遇之后的情景,那就是很复杂了,我们可以换位思考,我们要求蚂蚁都掉下来的时间,因为每个蚂蚁对我们来说都是一样的,所以就算两个蚂蚁相遇了,他们的本质对我们来说还是不变(相遇前一个向左爬行,一个向右爬行;相遇后还是一个向左爬行一个向右爬行)。
看出来这个问题,这题就没有复杂可言了,显然答案已经揭晓:
AnsMin= MAX{AnsMin, Min(a,b) } (a,b代表每只蚂蚁距离最左端和最右端的距离)
AnsMax=MAX{AnsMax,Max(a,b) }
好了,贴上代码吧:
1 #include<stdio.h> 2 #define MAX(a,b) a>b ? a : b 3 int main() 4 { 5 int N,d,n; 6 scanf("%d",&N); 7 for(int i=1;i<=N;i++){ 8 scanf("%d%d",&d,&n); 9 int a,b,AnsMin=0,AnsMax=0; 10 while(n--){ 11 scanf("%d",&a); 12 b=d-a; 13 if(a>b) a=b,b=d-a; 14 AnsMin=MAX(AnsMin,a); 15 AnsMax=MAX(AnsMax,b); 16 } 17 printf("%d %d\n",AnsMin,AnsMax); 18 } 19 return 0; 20 }